NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Master of Technology

Mechanical Engineering

First Year

(Effective from the Session: 2024-25)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology Mechanical Engineering <u>EVALUATION SCHEME</u> SEMESTER -I

S. N	Course Code	Subject	Types of Subjects	I	Periods		Evaluation Schemes			End S	Semester	Total	Credit	
				L	Т	Р	СТ	ТА	Total	PS	ТЕ	РЕ		
1	AMTME0101	Simulation Modelling and Analysis	Mandatory	3	0	0	20	10	30	-	70	-	100	3
2	AMTME0102	Design of Experiments	Mandatory	3	0	0	20	10	30	-	70	-	100	3
3	AMTCC0101	Research Process and Methodology	Mandatory	3	0	0	20	10	30	-	70	-	100	3
4		Departmental Elective – I	Departmental Elective	3	0	0	20	10	30	-	70	-	100	3
5		Departmental Elective – II	Departmental Elective	3	0	0	20	10	30	-	70	-	100	3
6	AMTME0151	simulation Modelling and Analysis lab	Mandatory	0	0	4	-	-		20	-	30	50	2
7	AMTME0152	Industry 4.0 Lab	Mandatory	0	0	4	-	-		20	-	30	50	2
		Total		15	0	8	-	-		-	-	-	600	19

List of Departmental Electives: -

S.No	Subject Code	Subject Name	Types of Subjects
1	AMTME0111	Geometric Design & Rapid Prototyping	Departmental Elective-I
2	AMTME0112	Advanced Heat & Mass Transfer	Departmental Elective-I
3	AMTME0113	Renewable Energy System	Departmental Elective-I
4	AMTME0114 Reliability, Maintenance Management & safety		Departmental Elective-I
S.No	Subject Code	Subject Name	Types of Subjects
1	AMTME0115	Turbo Machines	Departmental Elective-II
2	AMTME0116	Advanced Mechanical Vibrations	Departmental Elective-II
3	AMTME0117 Operations Research		Departmental Elective-II
4	AMTME0118	Advanced I.C. Engines	Departmental Elective-II

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective,OE:Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology Mechanical Engineering <u>EVALUATION SCHEME</u> SEMESTER -II

S. N	Course Code	Subject	Types of Subjects	Periods			Evaluation Scheme				End Semester		Total	Credit
				L	Т	Р	СТ	TA	Total	PS	ТЕ	PE		
1	AMTME0201	Digital Manufacturing and Automation	Mandatory	3	0	0	20	10	30	-	70	-	100	3
2	AMTME0202	Composite Materials	Mandatory	3	0	0	20	10	30	-	70	-	100	3
3		Departmental Elective-III	Departmental Elective	3	0	0	20	10	30	-	70	-	100	3
4		Departmental Elective-IV	Departmental Elective	3	0	0	20	10	30	-	70	-	100	3
5		Departmental Elective-V	Departmental Elective	3	0	0	20	10	30	-	70	-	100	3
6	AMTME0251	Automation and Mechatronics Lab	Mandatory	0	0	4	-	-	-	20	-	30	50	2
7	AMTME0252	Composite Materials Lab	Mandatory	0	0	4	-	-	-	20	-	30	50	2
8	AMTME0253	Seminar-I	Mandatory	0	0	2	-	-	-	50	-	-	50	1
		Total		15	0	10	-	-	-	-	-	-	650	20

List of Departmental Electives: -

S.No	Subject Name	Subject Name	Types of Subjects
1	AMTME0211	Advanced Finite Element Analysis	Departmental Elective-III
2	AMTME0212	Modern Manufacturing Technology	Departmental Elective-III
3	AMTME0213	Advanced Welding Technology	Departmental Elective-III
4	AMTME0214	Computational Fluid Dynamics	Departmental Elective-III
S.No	Subject Name	Subject Name	Types of Subjects
1	AMTME0215	Advanced Mechanics of Solids	Departmental Elective-IV
2	AMTME0216	Optimization Techniques	Departmental Elective-IV
3	AMTME0217	Artificial Intelligence and Machine Learning(AIML)	Departmental Elective-IV
4	AMTME0218	Management Information System	Departmental Elective-IV
S.No	Subject Name	Subject Name	Types of Subjects
1	AMTME0219	Flexible Manufacturing System	Departmental Elective-V
2	AMTME0220	Machine Vision	Departmental Elective-V
3	AMTME0221	Rapid Manufacturing and Tooling	Departmental Elective-V
4	AMTME0222	Hybrid Vehicle Technology	Departmental Elective-V

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE:Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

Course Title Simulation, Modelling & Analysis 3 0 3 Pre-requisites: Basic of Mechanical Engineering, Electrical Engineering, Differentiation, Integration Course objective: Image: Students will learn about the need of simulation and different statistical model. 2 Students will learn about Queue model. Students will learn about andom number generation. 3 Students will learn about different features of MATLAB Students will learn about Bond graph Course Contents / Syllabus Op hours Infroduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete and continuous systems, inventory systems; reliability and maintainability. Imited data, discrete distribution: Benould distribution; Binomial distribution; Geometric distribution, continuous distribution; Exponential distribution, Exponential Growth & Decay model, Logistic model. UNIT-I Queuing Models and Random Numbers Shours Queueing Models: Characteristics of queuing systems; the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems; server utilization in G/G/1/ac/a queues. Random Number Generation: Iroperties of random numbers, Pseudo random numbers, techniques of generating random numbers, tests of random numbers Random Number Generation: Iroperties of random numbers, Pseudo random numbers, techniques of generating random numb		M. TECH	I FIR	ST Y	YEAR
Course Objective: 1 Students will learn about the need of simulation and different statistical model. 2 Students will learn about the need of simulation and different statistical model. 3 Students will learn about adout Queue model. 4 Students will learn about adout on number generation. 5 Students will learn about adout on number generation. 4 Students will learn about adout offerent features of MATLAB 5 Students will learn about adout graph Course Contents / Syllabus UNIT-I Introduction Objective: UNIT-I Introduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system sinvalation: Terminology and concepts, statistical models: gestems, investory systems; reliability and maintability, limited data, discrete event systems invalation: Generate distribution; Biomial distribution; Generate distribution; Biomial distribution; Generate distribution; Biomial distribution; Generate distribution; Biomial distribution; Caracteristics of queuing systems, the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, inverse transform technique, Direct transformation for the Normal and Lognormal distri	Course Code	AMTME0101	LT	Р	Credit
Course objective: 1 Students will learn about the need of simulation and different statistical model. 2 Students will learn about queue model. 3 Students will learn about andom number generation. 4 Students will learn about different features of MATLAB 5 Students will learn about Bond graph Course Contents / Syllabus UNIT-I Introduction O9 hours Inroduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete and continuous systems, discrete event systems inventory systems; reliability and maintainability, limited data, discrete distributions: Bernouli distribution: Generatic distribution, Exponential distribution, Exponential Growth & Decay model, Logistic model. UNIT-II Queuing systems; inventory systems, stret willization in G/G/1/s/dx queues. Random Number Generation: Properties of random numbers, beaudo random numbers, techniques of generating random numbers, for random numbers, steps of random numbers, techniques of generating random numbers, for advantages of random numbers, techniques of generating random numbers, for random numbers, Paudo randon numbers, technique of generating random numbers, tests of random numbers, Reador Numbers, technique or random numbers, technique or random numbers, tests of random numbers, tests of random numbers, technique or random numbers, tests of random numbers, testadva queues.	Course Title	Simulation, Modelling & Analysis	3 0	0	3
Course objective: 1 Students will learn about the need of simulation and different statistical model. 2 Students will learn about queue model. 3 Students will learn about andom number generation. 4 Students will learn about different features of MATLAB 5 Students will learn about Bond graph Course Contents / Syllabus UNIT-I Introduction O9 hours Inroduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete and continuous systems, discrete event systems inventory systems; reliability and maintainability, limited data, discrete distributions: Bernouli distribution: Generatic distribution, Exponential distribution, Exponential Growth & Decay model, Logistic model. UNIT-II Queuing systems; inventory systems, stret willization in G/G/1/s/dx queues. Random Number Generation: Properties of random numbers, beaudo random numbers, techniques of generating random numbers, for random numbers, steps of random numbers, techniques of generating random numbers, for advantages of random numbers, techniques of generating random numbers, for random numbers, Paudo randon numbers, technique of generating random numbers, tests of random numbers, Reador Numbers, technique or random numbers, technique or random numbers, tests of random numbers, tests of random numbers, technique or random numbers, tests of random numbers, testadva queues.	Pre-requisites: H	Basic of Mechanical Engineering, Electrical Engineering,	Differe	ntiati	on, Integration
2 Students will learn about Queue model. 3 Students will learn about different features of MATLAB 4 Students will learn about different features of MATLAB 5 Students will learn about graph Course Contents / Syllabus UNIT-I Introduction Mathematical disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete event system simulation. General Principles: Concepts in discrete event simulation. Models in Simulation: Teminology and concepts, statistical models: queuing systems; inventory systems; reliability and maintainability, limited data, discrete distributions: Benonali distribution; Benoneric distribution, Generatic distribution, Exponential distribution, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, server utilization in G/G/1/x0/c queues. Random Number Generation: Properties of random numbers, Pseudo random numbers, techniques of generating random numbers, tests of random numbers are prejection technique. O9 hours Introduction to different simulation. Software 09 hours Introduction to different simulation software 09 hours Introduction to different simulation software 08 hours Routors 10 hyperbenet of simulation software, Simulation packages, MATLAB UNIT-IU Input Modelling and Validation of simulation software, Simulation packages, MATLAB, Basic operation in MA					
3 Students will learn about fifterent features of MATLAB 4 Students will learn about different features of MATLAB 5 Students will learn about Bond graph Course Contents / Syllabus UNIT-I Introduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete and continuous systems, inventory systems; reliability and maintainability. Imired data, discrete event simulation. Models in Simulation: Binomial distribution; Beometric distribution, continuous distribution: Uniform distribution; Exponential distribution, Exponential Growth & Decay model, Logistic model. UNIT-II Queuing Models and Random Numbers Queueing Models: Characteristics of queuing systems, server utilization in G/G/1/os/∞ queues. Random Number Generation: Inverse transform technique, Direct transformation for the Normal and Lognormal distribution, Convolution Method, Acceptance rejection technique UNIT-III Input Modelling and Validation UNIT-III Input Modelling and Validation of simulation software	1 Students wil	ll learn about the need of simulation and different sta	tistical	mod	el.
4 Students will learn about different features of MATLAB 5 Students will learn about Bond graph Course Contents / Syllabus UNIT-I Introduction: Introduction Introduction: inulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete and continuous systems, discrete event system simulation. General Principles: Concepts in discrete event simulation: Terminology and concepts, statistical models: queuing systems; reliability and maintainability, limited data, discrete distribution: Binomial distribution; Geometric distribution, Exponential distribution, Exponential distribution; Exponential distribution; Exponential distribution; Concepts in discrete distribution; Concepts and Random Numbers Queueing Models: Characteristics of queuing systems, server utilization in G/G/1/wo/w queues. 8hours Random Number Generation: Properties of random numbers, Pseudo random numbers, techniques of generating random numbers, Resudo random numbers, Rechniques of generating random numbers, Resudo random numbers, Rechniques of generating random numbers, Convolution Method, Acceptance rejection technique UNIT-II Input Modelling and Validation 09 hours Input Modelling and Validation 09 hours Input Modelling and Validation 09 hours Input Modelling and Validation software 08 hours Input Modelling and Validation of simulation of simulation models.	2 Students wil	l learn about Queue model.			
Students will learn about Bond graph Course Contents / Syllabus UNIT-I Introduction 09 hours Introduction: Simulation: a tool, advantages and disadvantages of simulation, carcepts in discrete event synulation: Terminology and concepts, statistical models: queuing systems; inventory systems imulation. General Principles: Concepts in discrete event simulation: Terminology and concepts, statistical models: queuing systems; inventory systems; reliability and maintainability, limited data, discrete distributions: Bernoulli distribution; Binomial distribution; Geometric distribution; Continuous distribution: Uniform distribution; Exponential distribution, Exponential Growth & Decay model, Logistic model. Shours Queuing Models: Characteristics of queuing systems, the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, server utilization in G/G/1/cs/∞ queues. Shours Random Number Generation: Inverse transform technique, Direct transformation for the Normal and Lognormal distribution, Convolution Method, Acceptance rejection technique O9 hours UNIT-III Input Modelling and Validation 09 hours Introduction to Simulation software 08 hours Introduction to different simulation software, Selection of simulation models. 08 hours UNIT-III Input Modelling and Validation 09 hours Input Modelling And Validation: Steps in the development of mod		6			
Course Contents / Syllabus UNIT-I Introduction 09 hours Introduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete event systems rimentory systems; reliability and maintainability, limited data, discrete event simulation. Models in Simulation: Terminology and concepts, statistical models: queuing systems; reliability and maintainability, limited data, discrete event simulation. Binomial distribution, Geometric distribution, continuous distribution: Uniform distribution; Exponential Growth & Decay model, Logistic model. WIIT-II Queuing Models and Random Numbers 8hours Queueing Models: Characteristics of queuing systems, the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, prever utilization in G/G/1/∞/∞ queues. 8hours Random Number Generation: Properties of random numbers, Pseudo random numbers, techniques of generating random numbers, tests of random numbers Random variate Generation: Inverse transform technique, Direct transformation for the Normal and Lognormal distribution, Goodness of Fit Tests, selecting input models without data, verification and validation of simulation models. 09 hours UNIT-IV Introduction to Simulation software 08 hours Introduction to different simulation software, Selection of simulation software, Simulation packages, MATLAB, Basic operation in MATLAB. 08 hours UNIT-V Application of MATLAB 08 hours					
UNIT-I Introduction 09 hours Introduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete and continuous systems, discrete event simulation. General Principles: Concepts in discrete event simulation: Binomial distribution: Binomial distribution; Binomial distribution; Benomial distribution; Benomial distribution; Binomial distribution; Benomial distribution; Ceometric distribution; Binomial distribution; Benomial distribution; Ceometric distribution; Ceometric distribution; Binomial distribution; Benomial distribution; Ceometric distribution; Ceometric distribution; Binomial distribution; Benomial distribution; Ceometric distribution; Ceomet	5 Students wil	l learn about Bond graph			
Introduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete and continuous systems, discrete event system simulation. General Principles: Concepts in discrete event simulation. Models in Simulation: Terminology and concepts, statistical models: queuing systems; reliability and maintainability, limited data, discrete event simulation. Models in Simulation: Terminology and concepts, statistical continuous distribution; Exponential distribution, Exponential distribution, Exponential distribution, Exponential distribution, Exponential distribution, Exponential Growth & Decay model, Logistic model. UNIT-II Queuing Models and Random Numbers Shours Queuing Models: Characteristics of queuing systems, server utilization in G/G/1/∞/∞ queues. Random Number Generation: Properties of random numbers, Pseudo random numbers, techniques of generating random numbers, tests of random numbers Random Variate Generation: Inverse transform technique, Direct transformation for the Normal and Lognormal distribution, Goodness of Fit Tests, selecting input models without data, verification and validation of simulation models. UNIT-IV Introduction to Simulation software O8 hours Introduction to different simulation software, Selection of simulation software, Simulation packages, MATLAB, Basic operation in MATLAB. O8 hours Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. O8 hours		Course Co	ntent	s / Sy	vllabus
continuous systems, discrete event system simulation. General Principles: Concepts in discrete event simulation. Models in Simulation: Terminology and concepts, statistical models: queuing systems; inventory systems; reliability and maintainability, limited data, discrete distributions: Bernoulli distribution; Binomial distribution; Geometric distribution, continuous distribution; UNIT-II Queuing Models and Random Numbers Decay model, Logistic model. UNIT-II Queuing Models and Random Numbers Sequence and the Decay model, Logistic model. Logistic model. Logistic models: Characteristics of queuing systems, the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, server utilization in G/G/1/∞/∞ queues. Random Number Generation: Properties of random numbers, Pseudo random numbers, techniques of generating random numbers, tests of random numbers and concepts, statistical models and Variate Generation: Inverse transform technique, Direct transformation for the Normal and Lognormal distribution, Goodness of Fit Tests, selecting input models without data, verification and validation of simulation models. UNIT-III Input Modelling and Validation for the of simulation models. UNIT-IV Introduction to Simulation software Selection of simulation packages, MATLAB, Basic operation in MATLAB. UNIT-V Application of MATLAB 08 08 hours Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. Textbooks:	UNIT-I I	Introduction			09 hours
UNIT-II Queuing Models and Random Numbers Shours Queueing Models: Characteristics of queuing systems, the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, server utilization in G/G/1/∞/∞ queues. Shours Random Number Generation: Properties of random numbers, Pseudo random numbers, techniques of generating random numbers, tests of random numbers Rendom numbers, tests of random numbers Rendom numbers, tests of random numbers Random Variate Generation: Inverse transform technique, Direct transformation for the Normal and Lognormal distribution, Convolution Method, Acceptance rejection technique 09 hours UNIT-III Input Modelling and Validation 09 hours Input Modelling And Validation: Steps in the development of model, data collection, Distribution identification, Parameter estimation, Goodness of Fit Tests, selecting input models without data, verification and validation of simulation models. 08 hours Introduction to different simulation software, Selection of simulation software, Simulation packages, MATLAB, Basic operation in MATLAB. 08 hours Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. 08 hours	continuous systems, di models: queuing system	screte event system simulation. General Principles: Concepts is; inventory systems; reliability and maintainability, limited da	s in disc ata, disc	crete e rete di	vent simulation. Models in Simulation: Terminology and concepts, statistical stributions: Bernoulli distribution; Binomial distribution; Geometric distribution,
Queueing Models: Characteristics of queuing systems, the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, server utilization in G/G/1/∞/∞ queues. Random Number Generation: Properties of random numbers, Pseudo random numbers, techniques of generating random numbers, tests of random numbers Random Variate Generation: Inverse transform technique, Direct transformation for the Normal and Lognormal distribution, Convolution Method, Acceptance rejection technique UNIT-III Input Modelling and Validation 09 hours Input Modelling And Validation: Steps in the development of model, data collection, Distribution identification, Parameter estimation, Goodness of Fit Tests, selecting input models without data, verification and validation of simulation models. 08 hours UNIT-IV Introduction to Simulation software 08 hours Introduction to different simulation software, Selection of simulation software, Simulation packages, MATLAB, Basic operation in MATLAB. 08 hours Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. 08 hours		* * * * *			
UNIT-IIIInput Modelling and Validation09 hoursInput Modelling And Validation: Steps in the development of model, data collection, Distribution identification, Parameter estimation, Goodness of Fit Tests, selecting input models without data, verification and validation of simulation models.08 hoursUNIT-IVIntroduction to Simulation software08 hoursIntroduction to different simulation software, Selection of simulation software, Simulation packages, MATLAB, Basic operation in MATLAB.08 hoursUNIT-VApplication of MATLAB08 hoursSolving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc.08 hours	measures of performa Random Number Ger Random Variate Ger	nce of queuing systems, server utilization in $G/G/1/\infty/\infty$ neration: Properties of random numbers, Pseudo random r	queues. numbers	s, tech	niques of generating random numbers, tests of random numbers
Input Modelling And Validation: Steps in the development of model, data collection, Distribution identification, Parameter estimation, Goodness of Fit Tests, selecting input models without data, verification and validation of simulation models. UNIT-IV Introduction to Simulation software 08 hours Introduction to different simulation software, Selection of simulation software, Simulation packages, MATLAB, Basic operation in MATLAB. 08 hours UNIT-V Application of MATLAB 08 hours Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. Textbooks:		Input Modelling and Validation			09 hours
Introduction to different simulation software, Selection of simulation software, Simulation packages, MATLAB, Basic operation in MATLAB. UNIT-V Application of MATLAB 08 hours Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. Textbooks:	Input Modelling And	Validation: Steps in the development of model, data		on, D	istribution identification, Parameter estimation, Goodness of Fit Tests,
UNIT-V Application of MATLAB 08 hours Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. 08 hours Textbooks: Vibration (Vibration) Vibration (Vibration)	UNIT-IV 1	Introduction to Simulation software			08 hours
Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. Textbooks:	Introduction to diffe	erent simulation software, Selection of simulation so	ftware,	Simu	lation packages, MATLAB, Basic operation in MATLAB.
Solving problem related Mechanical Vibration, Thermal, Kinematic of Mechanism, Optimization etc. Textbooks:	UNIT-V	Application of MATLAB			08 hours
			Mechar	nism,	Optimization etc.
	Textbooks:				
		lling and Analysis by Law and Kelton. Mc Graw Hi	11.		

2. Simula	. Simulation Model Design& execution by Fishwich, Prentice Hall.							
3. Discre	te event system simulation by Banks, Carson, Nelson and Nicol.							
2. MATI	AB for Mechanical Engineers by Rao V Dukkipati, Fairfield University							
Course	outcome:							
Course	ourse Modelling Simulation and Analysis							
1	Students will be able to analyse different statistical model.	K3						
2	Students will be able toanalyse a queue model and find server utilization	K3						
3	Students will be able to generate the random number and random	K2						
	variate based on distribution.							
4	Students will be able to verify and validate a model. K4							
5	Students will be able to simulate mechanical system using simulation	K4						
	software.							

		M. TECH	H F	IRS	ST YEAR
Course Code AM	ГМЕ0102	L	Т	Р	Credit
Course Title Des	ign of Experiments	3	0	0	3
Pre-requisites: Basics of	f statics	l			
Course objective:					
	s to learn how to plan, design a	nd conduct ex	perin	nent	s efficiently and effectively
č	alyze the resulting data to obtain		<u> </u>		
3 The objective of the T	aguchi's method is to produce l	nigh quality pr	oduc	ct at	low cost to the manufacturer
- 5					d engineering that compares the level of a desired signal to the level of
		Course Co	onte	ents	s / Syllabus
UNIT-I Introduction					09 hours
					, Guidelines for Designing Experiments. Concepts of random variable, probability, l tendency; Mean median and mode, Measures of Variability, Concept of confidence
UNIT-II Experiment	al design				8hours
					lomization, Two-level experimental designs for two factors and three factors. Three-
	Interpretation Methods	ects, Factor inte	eracti	ions,	Fractional factorial design, Saturated Designs, Central composite designs 09 hours
•••••	1	D1 - 44	1 4	- 1	is of variance (ANOVA) in Factorial Experiments: YATE's algorithm for ANOVA,
Regression analysis, Mathematical		Plotting method	ı, An	larys	is of variance (ANOVA) in Factorial Experiments: TATE's algorithm for ANOVA,
	Design Using Taguchi's Or	thogonal Ar	rays	S	08 hours
	0 0 0	0	•		tion assignment, Dummy level Technique, Compound factor method, Modification of
linear graphs					
UNIT-V Signal to No	ise Ratio				08 hours
					tter type, Nominal-the -better-type, Larger-the-better type. Parameter and tolerance
design concepts, Taguchi's inner an	id outer arrays, parameter design st	rategy, tolerand	e des	sign	strategy
Textbooks:					
D.C. Montgomery, Design and Ana					
Madhav S. Phadke, Quality Engine					Cliffs, New Jersey 07632,1989, ISBN: 0137451679
			I	trodi	
		for Quality - a	an m		uction Best of Taghuchi and Western Methods or Statistical Experimental Design,

Course of	Course outcome: After the successful completion of the course, the students will be able to:							
CO1	Define the basic terms as used and the process of developing strategic plans for experimentation in scientific and engineering research projects	K2						
CO2	2 Evaluate the performance of the research investigations based on factorial designs. K3							
CO3	CO3 Analyse alternative designs for experimentation and carry out output analysis for quality improvement projects K3							
CO4	Evaluate the performance of the research investigations based on Taguchi's Orthogonal Array	K4						

		M. TECH	I FIR	ST Y	EAR		
Course	e Code	AMTCC0101	LT	Р	Credit		
Course	e Title	Research Process & Methodology	3 0	0	3		
Course	e object	ive:					
1	To und	lerstand the concept / fundamentals of research and thei	ir types	5			
2	To und	erstand the methods of research design and steps of rese	earch p	roces			
3	To und	erstand the methods of data collection and procedure of	sampli	ing te	hniques		
4	To ana	lyse the data, apply the statistical techniques and underst	tand th	ie con	cept of hypothesis testing		
5	To und	erstand the types of research report and technical writing	g.				
Pre-ree	quisites	: Basics of Statistics					
	-	Course Co	ntents	s / Sy	labus		
UNIT	`-I	Introduction to Research			8 hours		
Definiti	on, objec	tive and motivation of research, Types and approaches o	f resear	rch, D	escriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs.		
Qualitat	tive, Con	ceptual vs. Empirical, Research methods versus Methodol	ogy, si	gnific	ance of research, criteria of good research.		
UNIT	'-II	Research Formulation and Design			8 hours		
	-		-		Importance and objective of Literature review, locating relevant		
	-		arch pr	oblen	, Literature Survey, Research Design, Methods of research design.		
UNIT		Data Collection			8 hours		
		-			lection of primary and secondary data, sampling, need of sampling,		
	<u> </u>	and Techniques, steps in sampling design, different types	of sam	iple de			
UNIT		Data Analysis			8 hours		
					osing an appropriate statistical technique, Hypothesis Testing, Data		
-	0		Test,	Analy	sis of variance (ANOVA) and covariance, Data Visualization -		
	Monitoring Research Experiments, hands-on with LaTeX.						
UNIT		Technical writing and Reporting of Research			8 hours		
~ 1				,	ort communication, conference presentation etc., Referencing and		
reference	ing style	is, Research Journals, indexing, citation of Journals and In	npact fa	actor,	Yypes of Indexing-SCI/SCIE/ESCI/SCOPUS/DBLP/Google Scholar/UGC-		

CARE etc. Significance of conferences and their ranking, plagiarism, IPR- intellectual property rights and patent law, commercialization, copy right, royalty, trade related aspects of intellectual property rights (TRIPS); scholarly publishing- IMRAD concept and design of research paper, reproducibility and accountability.

Course	Course outcome: Upon completion of the course, the student will be able to:								
CO 1	Know the concept / fundamentals for different types of research	K_2							
CO 2	Apply relevant research Design technique	K_3							
CO 3	Use appropriate Data Collection technique	K_3							
CO 4	Evaluate statistical analysis which includes various parametric test and non- parametric test and ANOVA technique	K ₅							
CO 5	Prepare research report and Publish ethically.	K ₆							
Text b	ooks								
1. (C. R. Kothari, Gaurav Garg, Research Methodology Methods and Techniques, New A	ge International publishers, Third Edition.							
2.]	Ranjit Kumar, Research Methodology: A Step-by-Step Guide for Beginners, 2 nd Editio	on, SAGE 2005.							
3 . E	3. Deepak Chawla, NeenaSondhi, Research Methodology, Vikas Publication								
Refere	Reference Books								
1. Do	1. Donald Cooper & Pamela Schindler, Business Research Methods, TMGH, 9th edition								
	2.Creswell, John W, Research design: Qualitative, quantitative, and mixed methods approach sage publications, 2013								

		M. TECH FIF	RST YEAI	R						
Cours	Course Code AMTME0151 L T P Credits									
Cour	Course TitleSimulation, Modelling & Analysis Lab0042									
Cours	se objecti	ives:								
		e fundamental knowledge on using various analytical too								
		ious fields of engineering where these tools can be effec								
3 To	o impart kn	owledge on how these tools are used in Industries by so	lving some 1	real time problems using these tools.						
	• • .									
	equisites									
	ts should h	ave basic knowledge of Engineering.								
S. No		LIST OF EXPERIMENT	TS (Total Eig	ght to be performed)						
1	Study of	simulation software Like ARENA, MATLAB.								
2	Simulati	on of translational and rotational mechanical systems								
3	Simulati	on of Queuing systems								
4	Simulati	on of Manufacturing System								
5	Generati	on of Random number								
6	Modelli	ng and Analysis of Dynamic Systems								
7	Simulati	on mass spring damper system								
8	Simulati	on of hydraulic and pneumatic systems.								
9	Simulati	on of Job shop with material handling and Flexible man	ufacturing s	ystems						
10	10 Simulation of Service Operations									
Cours	se outcon	I								
CO 1		lent will be able to appreciate the utility of the tools like T in solving real time problems and day to day problems		K2						
CO 2		hese tools for any engineering and real time applications		K2						

	Acquire knowledge on utilizing these tools for a better project in their	
CO 3	curriculum as well as they will be prepared to handle industry problems	К3
	with confidence when it matters to use these tools in their employment.	

	M. TECH FIRST YEAR				
Cours	se Code	AMTME0152	LTP	Credit	
Cours	se Title	Industry 4.0 LAB	0 0 4	2	
Cours	se objectiv	es:	·	·	
1		Students will be able to unders	<u> </u>		
2		To make students understand a	1	1	
3		To familiarize students with co			
-		dents understand and implement the concep	ots Additive Manufactur	ring and Reverse Engineering.	
	equisites:				
	ts should hav	e basic knowledge of Engineering.			
S. No	LIST OF F	EXPERIMENTS (Total Eight to be perform	med)		
1	Study of a S	Smart Factory setup based on Industry 4.0			
2	Study of Se	nsing and Actuating systems used in Indust	trial IOT		
3	Familiariza	tion with concept of IoT, Arduino/Raspberr	ry Pi and perform neces	sary software installation	
4	Develop an	IoT based smart lock system for Motor cyc	cle/Car		
5	Creating a r	nodel using Augmented Reality (AR/VR T	echnology)		
6	Study of Na	atural Language Processing including Synta	ctic, Semantic, Discour	rse and Pragmatic Processing.	
7	Machine Learning Project using Python for Linear Regression analysis of fuel consumption				
8	Operating a Robot to perform Pick and place operation using a structured program				
9	Design and	Simulate the task of Pick the pencil from the	he magazine and draw r	ectangle & Square	
10	Developme	nt of a designed model with given parameter	ers on FDM RP System		
11	Development of a designed model with given parameters on SLA RP System				
12					
Cours	se outcome	s: After completion of this course stud	lents will be able to		
CO 1	Become	e familiar with the concept of Industry 4.0		K ₂	
CO 2	2 Underst	and and implement fundamentals of Indust	rial IOT	K ₂	

CO 3	Practically implement the concepts of Robotics, AI/ML and AR/VR Technology.	K ₂
CO 4	Learn and implement the concepts Additive Manufacturing and Reverse Engineering.	K ₂

M. TECH FIRST YEAR					
Course Code	AMTME0111	LTP	Credit		
Course Title	Geometric Design & Rapid Prototyping	3 0 0	3		
Course objective:					
1 To impart knowle	edge on various Geometric Design & Rapid Proto Ty	ping so tha	t the students can apply them in engineering industry		
applications.					
Ũ	nding of modelling and design based on component g	eometry			
1	nowledge on the design of various components.				
-		1 1	ototyping and to update students on the latest technology		
I	er aided manufacturing and design are maintained in	0 1	°		
5 To impart knowle	edge on prototyping systems as well as learn how to p	perform bas	sic procedures on a system.		
Pre-requisites:					
	Course Contents	/ Syllabu	15		
UNIT-I	Geometric Design- Introduction:	•	4 hours		
Definition and scope of	f CAD/CAM, Introduction to design process and role	of comput			
Curves and Surfaces: A	Analytical, Synthetic curves with advantages, Disadv	antages, Co	omparison with parametric curves, Geometric modelling		
curves and surfaces, R	epresentation, Wire frame models, Parametric repres	entations, 1	Parametric curves and surfaces, Manipulations of curves		
and surfaces, DDA, Br	esenham's /Mid point line, circle, ellipse algorithms.				
UNIT-II	Solid modelling:		12hours		
Solid models, Fundan	nentals of solid modelling, Different solid representation	ntation sch	nemes, Half -spaces, Boundary representation (B-rep),		
e	ometry (CSG), Sweep representation, Analytic solid	modelling	g, Perspective, Parallel projection, Hidden line removal		
algorithms.		1			
UNIT-III	Rapid Prototyping- Introduction:		8hours		
•		g (RP), Cla	ssification of Rapid Manufacturing Processes: Additive,		
Subtractive, Formative	Subtractive, Formative, Generic RP process.				
UNIT-IV	Rapid Prototyping Process		8 hours		
			plications, limitations and comparison of various rapid		
			thography, Powder Bed Fusion (Selective laser Sintering		
		-	tion Modelling (FDM)), 3D Printing, Sheet Lamination		
(Laminated Object Ma	nufacturing (LOM), Ultrasonic Consolidation (UC))	, Beam De	position (Laser Engineered Net Shaping (LENS), Direct		

UNIT-V	CAD/CAM	8 hours
repair pro	del preparation, Data interfacing: formats (STL, SLC, CLI, RPI, LEAF, IGES ocedures; Part orientation and support generation, Support structure design, Mo l adaptive slicing, Tool path generation.	
Course	outcome: After completion of this course students will be able to	
CO 1	Explain the concepts and underlying theory of modelling and the usage of models in different engineering applications.	K1,K2
CO 2	Create accurate and precise geometry of complex engineering systems and use the geometric models in different engineering applications.	K3, K4
CO 3	Understand and use techniques for processing of CAD models for rapid prototyping.	
CO 4	Understand and use techniques for processing of CAD Understand and apply fundamentals of rapid prototyping techniques.	K3, K4, K5
CO 5	Use current state-of-the-art CAD/CAM technology in research.	K3,K4
Text Bo	ooks& Reference Books:	
1. Chua C	CK, Leong KF, Chu SL, Rapid Prototyping: Principles and Applications in Mat	nufacturing, World Scientific.
2. Gibsor	D W Rosen, Brent Stucker., Additive Manufacturing Technologies: Rapid Prote	otyping to Direct Digital Manufacturing, Springer.
	ni R, Rapid Prototyping: Principles and Applications in Manufacturing, John Wil	ley & Sons.
	ater Aided Engineering & Design Jim Browne New ATC International	
	igineering Database D.N. Chorafas and S.J. Legg Butterworths	
1	oles of CAD J Rooney & P Steadman Longman Higher Education	
	CAM H P Groover and E W Zimmers Prentice Hall	
8. Compi	iter Integrated Design and Manufacture D Bedworth, M Henderson & P Wolfe N	AacGraw Hill Inc.

		M.TEC	CH FIRST Y	EAR	
Course (Code	AMTME0112	L T P	Credit	
Course 7	Гitle	Advanced Heat and Mass Transfer	300	3	
Course of	objectiv	re:			
1	To unde	erstand the fundamental concepts of conduction and	its applications		
2	To unde	erstand the applications of fins and study the design	of fins		
3	To unde	erstand and demonstrate the principles of radiation a	and heat transfe	r phenomenon through radiation	
4		y and identify the phenomenon in convection heat the			
5	To unde	erstand the basic concepts of mass transfer and its ap	oplications		
Pre-requ	uisites:				
Basic know	ledge of l	Engineering Mechanics			
		Engineering Mathematics			
Reviews of	basic law	rs of Conduction, Convection and Radiation			
		Course	Contents / Sy	llabus	
UNIT-I		Conduction		8 hours	
One dimer	nsional st	eady state conduction with variable thermal conduction	ctivity and with	internal distributed heat source, Local heat source in non-adiabatic	
plate, Ther	rmocoup	e conduction error	-		
UNIT-II		Extended Surfaces		8 hours	
rectangulatin infinite	Extended Surfaces-Review, Optimum fin of rectangular profile, straight fins of triangular and parabolic profiles, Optimum profile, Circumferential fin of rectangular profile, spines, design considerations. 2D steady state conduction, semi-infinite and finite flat plates, Temperature fields infinite cylinders and in infinite semi-cylinders, spherical shells, Graphical method, relaxation technique. Unsteady state conduction, Sudden changes in the surface temperatures of infinite plates, cylinders and spheres using Groeber's and Heisler charts for plates, cylinders and spheres suddenly immersed in fluids.				
UNIT II		Radiation		8 hours	
reflections	Review of radiation principles, Diffuse surfaces, and the Lambert's cosine law. Radiation through non-absorbing media, Hottel's method of successive reflections, Gebhart's unified method, Poljak's method. Radiation through absorbing media, Logarithmic decrement of radiation, Apparent absorptive of simple shaped gas bodies, Net heat exchange between surfaces separated by absorbing medium, Radiation of luminous gas flames.				
UNIT-IV	1 0	Convection	<u> </u>	8 hours	
Convection Velocity a dimension	n: Heat and therm al veloci sivity, Re	transfer in laminar flow, free convection between hal entry length, solutions with constant wall temp ty and temperature boundary layer equations, Karm eynold's analogy between skin friction and heat	perature and when when the second sec	, forced internal flowthrough circular tubes, fully developed flow, ith constant heat flux, Forced external flow over a flat plate, two- approximate integral method. Heat transfer in turbulent flow, Eddy tl-Taylor, Von Karman and Martineli's analogies, Turbulent flow	

UNIT V	Mass Transfer8	hours			
Mass Transfer: Definition, Examples, Fick's law of diffusion, Fick's law as referred to ideal gases, Steady-state Isothermal Equi-molal counter diffusion of ideal gases, Mass diffusivity, Gilliland's equation, Isothermal evaporation of water and its subsequent diffusion into dry air, Mass transfer coefficient, Numerical problems.					
Course	outcome: After completion of this course students will be able to				
CO 1	Understand both the physics and the mathematical treatment of the advance topics pertaining to the modes of heat transfer	ed K2, K3			
CO 2	Apply principles of heat transfer to develop mathematical models for unifor and non-uniform fins	$\mathbf{m} \mathbf{K}_3, \mathbf{K}_4$			
CO 3	Employ mathematical functions and heat conduction charts in tackling tw dimensional and three-dimensional heat conduction problems.	NO K4, K5			
CO 4	Analyze free and forced convection problems involving complex geometri with properboundary conditions.	tes K_3, K_4			
CO 5	Apply the concepts of radiation heat transfer for enclosure analysis.	K4			
CO 6	Understand physical and mathematical aspects of mass transfer.	K ₁ , K ₂			
Text Bo	oks				
	pals of Heat Transfer/Frank Kreith/Cengage Learning				
· /	nts of Heat Transfer/E. Radha Krishna/CRC Press/2012				
	ransfer/RK Rajput/S.Chand				
	ceBooks				
(1) Introduction to Heat Transfer/SK Som/PHI					
	eering Heat & Mass Transfer/Mahesh Rathore/Lakshmi Publications ransfer / NecatiOzisik / TMH				
	ransfer / Nellis& Klein / Cambridge University Press / 2012				
(+)11cal 1	Tailster / Tychis& Kichi / Calibridge University F1655 / 2012				

	M. TECH	I FIRS	T Y	(EA)	R
Course Cod	e AMTME0113	L	Т	P	Credit
Course Title	Renewable Energy System	3	0	0	3
Course obje	ctive:				
1 To mak	students understand the concept of renewable and no	on- rene	wab	le ene	ergy resources.
	students able to understand the applications of solar	0.		U	
	students understand biogas generation, and hydro-el	0			I
	students able to identify wind energy as an alternate				
5 To mak	students aware of the Concept of integration of conv	ventiona	l an	d non-	-conventional energy resources and systems.
Pre-requisit	es:				
Basic knowledg	of thermal Engineering.				
	Course Co	ntents	/ S	yllab	us
UNIT-I	Introduction				8 hours
Introduction:	Energy and Development; Energy demand and	availabi	lity;	Ener	gy crisis; Conventional and Nonconventional energy;
					ional energy usage; Basic concepts of heat and fluid flow
useful for ener	y systems.	-			
UNIT-II	Solar Energy Systems			8 h	ours
Solar Energy	Systems: Solar radiations data; Solar energy collection	on, Stor	age	and u	tilization; Electro Chemical Storage, (Li-ion, Li-Po, Lead
Acid, salt wat	er) factors affecting energy storage, solar storage of	options,	Sol	ar wa	ter heating; Solar air heating; Solar Power generation;
Refrigeration a	nd Air-conditioning.				
UNIT III	Micro and Small Hydro Energy Systems				8 hours
Micro and Si	nall Hydro Energy Systems: Resource assessment	t of mi	cro	and s	mall hydro power; Micro, mini and small hydro power
systems; Pump	and turbine; Special engines for low heads; Velocity	head tu	rbin	es; Hy	ydrams; Water-mill; Tidal power.
UNIT-IV	Bio-mass Energy Systems				8 hours
Bio-mass Ene	gy Systems: Availability of bio mass, agro, forest, a	animal,	mun	icipal	and other residues; Optimization of bio-mass utilization,
Bio mass conv	rsion technologies; Cooking fuels; Biogas; producer	gas; Po	wer	alcoh	ol from biomass; Power generation.
UNIT V	Wind Energy Systems&Integrated Energy Syst	ems		8 h	ours
Wind Energy	Systems: Wind data; Horizontal and vertical axis wir	ndmills;	Win	nd far	ms; Economics of wind energy.
Integrated Er	ergy Systems: Concept of integration of convention	al and	non-	conve	entional energy resources and systems; Integrated energy
Integrated Energy Systems: Concept of integration of conventional and non-conventional energy resources and systems; Integrated energy system design and economics.					

Cours	Course outcome: After completion of this course students will be able to				
CO 1	Perceive the concept of renewable and non-renewable energy resources.	K2, K3			
CO 2	Recognize various methods of solar energy collection and conversion along-with its storage.	K ₃ , K ₄			
CO 3	Apply the knowledge of biogas generation and hydro-electric generation, also their impact on the environment.	K4, K5			
CO 4	Categorize various windmills and their utilization based on their characterization.	K ₃ , K ₄			
CO 5	Integrate conventional and non-conventional energy resources and systems for betterment of society.	K ₄			
Text I	Books				
1.	1. Energy Efficient Buildings in India Mili Majumdar Tata Energy Research Institute				
2.	Renewable Energy Systems Simmoes Marcelo Godoy CRC Press				
3.	Renewable Energy Resources John Twidell Taylor and Francis				
Refer	enceBooks				
1.	1. Renewable Energy Sources and Their Environmental Impact Abbasi & Abbasi PHI				
2.	2. Solar Energy – Principles of Thermal Collection and Storage by S P Sukhatme				
3.	Solar Engineering of Thermal Processes by J ADuffie and W A Beckma	n			
4.	Principles of Solar Engineering by D Y Goswami and J F Kreider				
5.	Introduction to Sustainable Engineering by R L Rag and Leks				

M. TECH FIRST YEAR			
Course Code	AMTME0114	LTP	Credit
Course Title	Reliability, Maintenance Management & Safety	300	3
Course object	ive:	I	
	idents able to understand the concept of reliability, its	1	1
	idents perceive the knowledge of maintainability, available		
	ents able to integrate the concept of maintenance plant	<u> </u>	* * *
	idents able to use various monitoring techniques, and		
	idents make aware of various safety aspects and hazar	ds associate	ed in plant
Pre-requisites Basic knowledge o	f Industrial engineering		
	Course Con	tents / Syl	llabus
UNIT-I	Reliability Engineering		8 hours
Doliobility English	coming System reliability coming norallal and mixed		
Kenability Eligit	reering: System renability - series, parallel and mixed	l configurati	ion, Block diagram, rout-of-n structure, solving problems using
• 0		U	
mathematical mo		ty in achiev	ion, Block diagram, rout-of-n structure, solving problems using ving reliability, Method of improving reliability during design, st trade off, Prediction and analysis, Problems.
mathematical mo different techniqu	dels. Reliability improvement and allocation-Difficul	ty in achiev ability – Co	ving reliability, Method of improving reliability during design,
mathematical mo different techniqu UNIT-II	dels. Reliability improvement and allocation-Difficul les available to improve reliability, Optimization, Reli Maintainability, Availability & Failure Analysis	ty in achiev ability – Co 8	ving reliability, Method of improving reliability during design, st trade off, Prediction and analysis, Problems.
mathematical mo different techniqu UNIT-II Maintainability,	dels. Reliability improvement and allocation-Difficul les available to improve reliability, Optimization, Reli Maintainability, Availability & Failure Analysis Availability & Failure Analysis: Maintainability &	ty in achiev ability – Co 8 & Availabili	ving reliability, Method of improving reliability during design, st trade off, Prediction and analysis, Problems.
mathematical mo different techniqu UNIT-II Maintainability, maintainability &	dels. Reliability improvement and allocation-Difficul les available to improve reliability, Optimization, Reli Maintainability, Availability & Failure Analysis Availability & Failure Analysis: Maintainability & availability, trade off among reliability, maintainability	ty in achiev ability – Co 8 2 Availabili ity & availa	ving reliability, Method of improving reliability during design st trade off, Prediction and analysis, Problems. hours ity – Introduction, formulae, Techniques available to improve
mathematical mo different techniqu UNIT-II Maintainability, maintainability & defects reporting UNIT III	dels. Reliability improvement and allocation-Difficul les available to improve reliability, Optimization, Reli Maintainability, Availability & Failure Analysis Availability & Failure Analysis: Maintainability & availability, trade off among reliability, maintainabil and recording, Defect analysis, Failure analysis, Equip Maintenance Planning and Replacement	ty in achiev ability – Co 8 2 Availabili ity & availa oment down	 ving reliability, Method of improving reliability during design st trade off, Prediction and analysis, Problems. hours ity – Introduction, formulae, Techniques available to improve ability, simple problems, Defect generation – Types of failures a time analysis, Breakdown analysis, TA, FMEA, FMECA. 8 hours
mathematical mo different techniqu UNIT-II Maintainability, maintainability & defects reporting UNIT III	dels. Reliability improvement and allocation-Difficul les available to improve reliability, Optimization, Reli Maintainability, Availability & Failure Analysis Availability & Failure Analysis: Maintainability & availability, trade off among reliability, maintainabil and recording, Defect analysis, Failure analysis, Equip Maintenance Planning and Replacement	ty in achiev ability – Co 8 2 Availabili ity & availa oment down	ving reliability, Method of improving reliability during design st trade off, Prediction and analysis, Problems. hours ity – Introduction, formulae, Techniques available to improve ability, simple problems, Defect generation – Types of failures a time analysis, Breakdown analysis, TA, FMEA, FMECA. 8 hours
mathematical mo different techniqu UNIT-II Maintainability, maintainability & defects reporting UNIT III Maintenance P	dels. Reliability improvement and allocation-Difficul tes available to improve reliability, Optimization, Reli Maintainability, Availability & Failure Analysis Availability & Failure Analysis: Maintainability & availability, trade off among reliability, maintainabil and recording, Defect analysis, Failure analysis, Equip Maintenance Planning and Replacement Planning and Replacement: Maintenance plan	ty in achiev ability – Co 8 2 Availabili ity & availa oment down	ving reliability, Method of improving reliability during design st trade off, Prediction and analysis, Problems. hours ity – Introduction, formulae, Techniques available to improve ability, simple problems, Defect generation – Types of failures a time analysis, Breakdown analysis, TA, FMEA, FMECA. 8 hours overhaul and repair; Meaning and difference, Optima
mathematical mo different techniqu UNIT-II Maintainability, maintainability & defects reporting UNIT III Maintenance P overhaul/Repair/F	dels. Reliability improvement and allocation-Difficul les available to improve reliability, Optimization, Reli Maintainability, Availability & Failure Analysis Availability & Failure Analysis: Maintainability & availability, trade off among reliability, maintainability and recording, Defect analysis, Failure analysis, Equip Maintenance Planning and Replacement Planning and Replacement: Maintenance plan Replace maintenance policy for equipment subject to	ty in achiev ability – Co 8 2 Availabili ity & availa oment down ning – O breakdown,	 ving reliability, Method of improving reliability during design st trade off, Prediction and analysis, Problems. hours ity – Introduction, formulae, Techniques available to improve ability, simple problems, Defect generation – Types of failures a time analysis, Breakdown analysis, TA, FMEA, FMECA.

UNIT-IV	Condition Monitoring	8 hours
Condition M	onitoring: Techniques-visual monitoring, temperature monitorir	ng, vibration monitoring, lubricant monitoring, Crack monitoring,
Thickness mo	nitoring, Noise and sound monitoring, Condition monitoring of	hydraulic system, Machine diagnostics - Objectives, Monitoring
strategies, Exa	mples of monitoring and diagnosis, Control structure for machine	e diagnosis.
UNIT V	Safety Aspects	8 hours
Safety Aspect	s: Importance of safety, Factors affecting safety, Safety aspects	s of site and plant, Hazards of commercial chemical reaction and
operation, Inst	ruments for safe operation, Safety education and training, Perso	nnel safety, Disaster planning and measuring safety effectiveness,
Future trends i	n industrial safety.	
	-	
Course out	nomet After completion of this course students will be ab	
Course outo	Come: After completion of this course students will be ab Perceive the concept of reliability, its components and	K2, K3
COT	techniques used in it.	K2, K5
CO 2	Incorporate maintainability, availability, and failure in	K ₃ , K ₄
002	quality.	
CO 3	Integrate maintenance planning, replacement, and inspection	K4, K5
	to quality.	
CO 4	Make use of various monitoring techniques used.	K ₃ , K ₄
CO 5	Get knowledge on various safety aspects and hazards	K4
	associated in various industries.	
Text Books		
1.Concepts in	Reliability Engineering L.S. Srinath Affiliated East West Press	
	ity and Reliability Handbook Editors: Ireson W.A. and C.F. Coor	nbs McGraw Hill Inc.
Ũ	nosis and Performance Monitoring L.F. Pau Marcel Dekker	
ReferenceB		
	aintenance Management S.K. Srivastava S. Chand & Co Ltd.	
U	t of Industrial Maintenance Kelly and M.J. Harris Butterworth and	d Co.
	e, Replacement and Reliability A.K.S. Jardine Pitman Publishing	
4.Engineering	Maintainability: How to Design for Reliability and Easy Mainten aintenance Management S.K. Srivastava S. Chand & Co Ltd.	ance B.S. Dhillon Prentice Hall of India

	M. TI	ECH FIRSTYE	AR			
Course Cod	e AMTME0115	L T P	Credit			
Course Title	e Turbo Machines	3 0 0	3			
Course obje	Course objective:					
1	To study the basics of turbomachinery					
2	To study the energy transfer in nozzles and the de	esign of steam turbine	blades			
3	To study the fundamentals and design of centrifu	gal compressors				
4	To study the fundamentals and design of axial flo	ow compressors				
5	To study and analyse the design of axial flow gas	s turbine				
Pre-requisit	tes:					
	e of Engineering Mechanics					
	e of Engineering Mathematics					
	c laws of thermodynamics					
Reviews of basi	c laws of fluid mechanics					
	Cours	e Contents / Sylla	bus			
UNIT-I	Fundamentals of Turbo Machines		8 hours			
Classifications, Applications, Thermodynamic analysis, Isentropic flow. Energy transfer. Efficiencies, Static and Stagnation condition						
Continuity equ	ations, Euler's flow through variable cross-sectio	nal areas, Unsteady flo	ow in turbo machines			
UNIT II	Steam Nozzles		8 hours			
Convergent an	nd Convergent-Divergent nozzles, Energy Bala	nce, Effect of backpa	ressure of analysis. Designs of nozzles. Steam Turbines:			
Impulse turbin	es, Compounding, Work done and Velocity tria	ngle, Efficiencies, Co	nstant reactions, Blading, Design of blade passages, Angle			
and height, Se	condary flow. Leakage losses, Thermodynamic an	nalysis of steam turbin	nes			
UNIT-III	Gas Dynamics		8 hours			
Fundamental t	hermodynamic concepts, isentropic conditions,	mach numbers and a	area, Velocity relations, Dynamic Pressure, Normal shock			
relation for pe	erfect gas. Supersonic flow, oblique shock wa	ves. Normal shock r	ecoveries, Detached shocks, Aerofoil theory. Centrifugal			
compressor: T	ypes, Velocity triangles and efficiencies, Blade	passage design, Diffus	ser and pressure recovery. Slip factor, Stanitz and Stodolas			
formula's, Effect of inlet mach-numbers, Pre whirl, Performance.						
UNIT IV	Axial Flow Compressors		8 hours			
Flow Analysis	, Work and velocity triangles, Efficiencies, The	ermodynamic analysis	s. Stage pressure rise, Degree of reaction, Stage Loading,			
			netrical and terminology. Blade force, Efficiencies, Losses,			
	, Vortex Blades.	•				

UNIT V	Axial Flow Gas Turbines 8	8 hours
Soderberg, Actuator di	e. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree Hawthrone, Ainley, Correlations, Secondary flow, Free vortex blade, Blade sc, Theory, Stress in blades, Blade assembling, Material and cooling of blad performance.	angles for variable degree of reaction.
Course of	utcome: After completion of this course students will be able to	
CO 1	Explain the working principles of turbomachines and apply it to various types of machines	K2
CO 2	Perform the preliminary design of steam nozzles	K4
CO 3	Determine the velocity triangles in turbo-machinery stages operating at off-design conditions.	К3
CO 4	Analyse the design and calculate the design parameters for axial flow compressors.	K4
CO 5	Analyse the cascade design for axial flow gas turbines for various blades	K3, K4
Reference	e Books	
(1) Principl	es of Turbo Machines/DG Shepherd / Macmillan	
(2)Fundame	entals of Turbomachinery/William W Perg/John Wiley & Sons	
. ,	of Gas Dynamics/Yahya/TMH	
(4) Principl	es of Jet Propulsion and Gas Turbine/NJ Zucrow/John Wiley & Sons/Newyo	ork
TextBook	<u>(8</u>	
	es, Pumps, Compressors/Yahya/TMH	
	on Turbo Machines/ G.Gopal Krishnan &D.Prithviraj/ Sci Tech Publishers,	Chennai
(3)Theory a	and practice of Steam Turbines/ WJ Kearton/ELBS Pitman/London	

		M. TECH FIRST	YEAR		
Course Code AMTME0116 LTP Credi					
Course Title		Advanced Mechanical Vibrations	3 0 0	3	
Cour	se objective:				
1	Understand diffe vibration.	rent types of vibration and mathematical analysis of sin	gle degree freedom system under free vib	ration and damped	
2	Understand the a types of vibration	nalysis of two-degree freedom system under free, damp n absorbers.	bed and forced vibrations and principle and	d working of differen	
3	Ability to carry of	out exact and numerical analysis of multi degree freedor	m system subjected to different types of v	ibration.	
4	Understand the numerical methods to determine natural frequencies of the beam and bar under free and forced vibrations.				
5	Understand the r	on-linear vibrating system under undamped and forced	vibration.		
UNIT Introd		Course Contents / Sy Introduction zation of engineering vibration problems, Review of	*	8 hours e, damped and force	
vibrati				, <u>1</u>	
UNIT	-II	Two-degree of Freedom Systems		8 hours	
	-	Systems: Principal modes of vibration, Spring couple pled systems, Undamped vibration absorbers, Forced da		ration of an undampe	
UNIT		Multi-degree Freedom systems		8 hours	
	-	systems: Eigen-value problem, Close coupled and far c			
	· •	ced vibration systems, Approximate methods for funda a iteration, Finite element method for close coupled and		y, Stodola and Holz	

UNIT-IV	Continuous systems 8	8 hours		
	s systems: Forced vibration of systems governed by wave equation, Free and forced vibrations of beams/ bars Vibrations: Response to an impulsive, step and pulse input, Shock spectrum			
UNIT V	Non-linear Vibrations 8 hou	rs		
Non-linea	Vibrations: Non-linear systems, Undamped and forced vibration with non-linear spring forces, Self-excited vibrations.			
Course o	utcome: After completion of this course students will be able to			
CO 1	Demonstrate the different types of vibration and analyse the mathematically the single degree freedom system under free vibration and damped vibration	K2, K3		
CO 2	Apply the mathematical concept solve for the motion and the natural frequency for forced vibration of a two degree K ₃ , K ₄ of freedom damped or undamped system.			
CO 3	Apply the mathematical analysis of multi degree freedom system subjected to different types of vibration to K_4, K_5 calculate natural frequency.			
CO 4	Apply the numerical methods and calculate natural frequencies of the beam and bar under free and forced vibrations. K_{3} , K_{4}			
CO 5	Compute the natural frequencies of non-linear vibrating system under undamped and forced vibration.	K ₄		
Text Boo				
	practice of Mechanical Vibrations J.S. Rao and K. Gupta New Age International			
	Vibrations G.K. Groover Nem Chand & Brothers Vibration Practice V. RamamurtiNarosa Publications			
Reference				
	Vibrations V.P. Singh Dhanpat Rai & sons			
	f Mechanical Vibrations R.V. Dukkipati& J. Srinivas Prentice Hall of India			

	M. TECH FIRST YEA	AR	
Course Code	AMTME0117	LTP	Credit
Course Title	Operations Research	3 0 0	3
COURSE OBJECTIV	E		
Ability to unders	stand and analyze managerial problems in industry so that they are able to use	resources (capitals, materials, staffing, and ma	achines) more
2 Knowledge of fo	ormulating mathematical models for quantitative analysis of managerial proble	ems in industry.	
3 Skills in the use	of Operations Research approaches and computer tools in solving real problem	ms in industry.	
4 Mathematical m	nodels for analysis of real problems in Operations Research.		
Pre-requisites			
	Course content /syllabus		
Unit-1	Introduction	8 H	Hours
ntroduction: definition echniques.	and scope of OR; Techniques and tools; Model formulation; general method	ds for solution; Classification of optimization	problems; Optimizatio
Unit-2	Linear Programming	81	Hours
Fraveling salesman pro	Iodels: Complex and revised simplex algorithms; Duality theorems, sensiti oblem as an Assignment problem; Integer and parametric programming; Gero sum game; Games by simplex dominance rules.	oal programming. Game Problems: Mini-ma	ax criterion and optim
U nit-3	Waiting Line Method	8 H	Hours
	: Classification of queuing situations; Kendall's notation, Poisson arrival wite rates; Application of queuing theory to industrial problems.	th exponential or Erlang service time distribution	ution; Finite and infini
Unit-4	Dynamic Programming		Hours
Dynamic Programming: simplex algorithm for so	: Characteristic of dynamic programming problems (DPPs); Bellman's prin	ciple of optimality; Problems with finite nu	imber of stages; Use
1 0	Non-linear Programming		Hours
Unit-5	Non-mear rrogramming	01	lours

problem	n; Indirect methods; Search and gradient methods.			
Cou	rse Outcomes: -After the successful completion of the course, the students will be able to:			
1	understand the application of OR and frame a LP Problem with solution – graphical.	K2		
2	build and solve Transportation, Assignment and Game Model problems using appropriate method.	K3		
3	build and solve waiting line problems using appropriate method.	K3		
4	solve simple problems of replacement and implement practical cases of decision making under different business environments.	K4		
5	analyses the problems of unconstrained nonlinear programming. Knows the necessary and sufficient conditions for the solution of unconstrained problems.			
Text B	ooks			
1	Operations Research, H.A. Taha, Prentice Hall			
2	Engg. Optimization, S.S. Rao, New Age Publication			
Refere	Reference Books			
1	Operations Research, Dr. D. S. Hira, Er. Prem Kumar Gupta			
2	Schaum's Outline of Operations Research			

Course Code	AMTME0118	LTP	Credit
Course Title	Advanced I.C. Engines	3 0 0	3
Course object	ive:		
1 To explain	and classify conventional, modern engin	e technologies of I. C	C. Engines.
2 To discus	s and analyze various combustion phenom	enon and different co	omponents of S.I. Engines and C.I. Engines.
	p competence in performance analysis, op	-	ě
1		0	emissions on environment and emission control methods.
5 To develo	p skill and acquire knowledge of modern of	engine technologies a	and develop smart future mobility solutions.
Pre-requisites	,		
	f Industrial engineering		
		urse Contents / S	vllabus
UNIT-I	Introduction		8 hours
	fferent types of conventional and modern	I.C. Engine, Valve a	
01111	Combustion of engines		8 hours
Combustion in C	& SI engines, Knocking parameters, Con	bustion chambers co	onstruction
UNIT III	Testing and performance		8 hour
Testing and perfo	rmance, Engine cooling & lubrication, Eff	ects of Superchargin	g & Turbo charging, Boost control.
		1 0	
	Fuels		8 hour
UNIT-IV	r ueis		
		s, Engine cooling &	lubrication, Pollution due to engines, pollution control devices
		s, Engine cooling &	lubrication, Pollution due to engines, pollution control devices

Course outcome: After completion of this course students will be able to				
CO 1	Explain and demonstrate conventional and modern engine technologies.	K2, K3		
CO 2	Explain and understand the gas exchange processes and motion of charge in the cylinder and its effects on combustion process in SI and CI engines.	K ₃ , K ₄		
CO 3	Analyze the performance, optimization, and control of I.C. engines.	K4, K5		
CO 4	Express the fuels, alternatives fuels, emissions formation and their treatment.	K ₃ , K ₄		
CO 5	Explain and demonstrate modern engine technologies and develop smart future mobility solutions.	K ₄		
Text Boo	bks			
I.C Engine	Analysis & Practice by E.F Obert.			
I.C Engine	by Ganesan, Tata McGraw Hill Publishers.			
A Course i	n International Combustion Engines, by Mathur& Sharma, DhanpatRai& Sons.			
Reference	ceBooks			
I.C Engine	, by R. Yadav, Central Publishing House, Allahabad			
Reciprocat	ing and Rotary Compressors, by Chlumsky, SNTI Publications, Czechoslovakia			
Engineering Fundamentals of Internal Combustion Engines by W.W. Pulkrabek, Pearson				

M. TECH FIRST YEAR						
Course Code	Course Code AMTME0201 L T P Credit					
Course Title	Digital Manufacturing and Automation (DMA)	300	3			
Course objecti	ve:					
	ding of the Development of CNC Technology and Indust	ry 4.0				
2 Learning a	bout the CNC Programming, G & M Codes, CAM packa	iges, Geometr	ical Design & 3-D printing.			
3 To provide						
4 Learning a	bout Robotics and Material Handling Systems, Automate	ed guided veh	icle systems.			
5 Learning a	bout the Group Technology and FMS, Understanding an	d Learning ab	out the CIM and DMA, Concurrent engineering.			
Pre-requisites:	Basics of Manufacturing					
	Course Conte	ents / Syllab	DUS			
UNIT-I	Introduction to CNC Machine Tools:	•	6 hours			
Development of C	NC Technology-Principles and classification of CNC ma	achines, Adva	ntages & economic benefits, Types of control, CNC			
controllers, Chara	cteristics, Interpolators, Applications, DNC concept. Indu	ustry 4.0				
UNIT-II CNC Programming:		8 hours				
Co-ordinate Syste	m, Fundamentals of APT programming, Manual part pro	gramming-str	ucture of part programme, G & M Codes, developing simple			
1 1 0			Unigraphics, Pro Engineer, CATIA, ESPIRIT, Master CAM			
	andard controllers-FANUC, Heidenhain and Sinumeric controllers	ontrol system.				
UNIT-III	Tooling for CNC Machines:		6 hours			
Ū.		1	et tooling, cooling fed tooling system, Quick change tooling			
	ystem for machining centre and turning centre, tool holde	ers, Tool asser	nblies, Tool magazines, ATC mechanisms, Tool			
management. Sma	<u> </u>					
UNIT-IV Robotics and Material Handling Systems:		8 hours				
			function, Types of material handling equipment, Conveyer			
•	ed guided vehicle systems, Automated storage/retrieval s	ystems, Work	c-in-process storage, Interfacing handling and storage with			
manufacturing.						
UNIT-V	Group Technology and Flexible Manufacturing	system:	12 hours			

Group Technology-part families, Parts classification and coding, Production flow analysis, Machine Cell Design, Benefits of Group Technology, Flexible manufacturing systems- Introduction, FMS workstations, Computer control system, Planning for FMS, Applications and benefits. **Computer Integrated Manufacturing:** Introduction, Evaluation of CIM and leading to Digital Manufacturing and Automation (DMA), CIM hardware and software, Requirements of computer to be used in CIM system, Database requirements, Concurrent Engineering-Principles, design and development environment, advance modelling techniques.

Course outcome: Upon completion of the course, the student will be able to:

CO 1 U	Inderstand the Development of CNC Technology- CNC controllers,	\mathbf{K}_2
C	haracteristics, Interpolators, Applications, DNC concept and Industry 4.0	
CO 2 Lo	earned about the CNC Programming, G & M Codes, CAM packages, Geometrical	\mathbf{K}_3
	besign & 3-D printing.	
CO 3 U	se detailed interpretation of Tooling for CNC Machines, Cutting tool materials, &	K_3
Sı	mart manufacturing.	
	now about Robotics and Material Handling Systems, Robot anatomy, Conveyer	K5
	stems, Automated guided vehicle systems, Interfacing handling and storage with	
	nanufacturing.	
	pply detailed interpretation of the GT and FMS, CIM, requirements of computer to	K_6
be	e used in CIM and DMA, Concurrent engineering.	
Text boo	oks	
1. Con	nputer Numerical Control Machines P. Radhakrishnan New Central Book Agency	
2. CN0	C Machines M.S. Sehrawat and J.S. Narang Dhanpat Rai and Co.	
3. CN0	C Programming Handbook Smid Peter Industrial Press Inc.	
Referen	ce Books	
1		
I. Automa	ation, Production systems and Computer M.P. Groover Prentice Hall of India Integrat	ed Manufacturing

	M. TECH FIRST YEAR				
Course Code AMTME0202		LTP	Credit		
Course '	Title	Composite Materials	300	3	
Course	objective:				
1	To underst	and Composite materials and its applications.			
2	To underst	and the various types of composite materials			
3	To know the processing techniques of composite materials				
4	Determine	e stresses and strains in composites.			
5		d the mechanical behaviour of laminated compo	osite		
Pre-req	uisites:The	student should have knowledge of material scie	nce and strep		
UNIT-I	In	troduction to composites		8 hours	
Classifications of Engineering Materials, Concept of composite materials, Matrix materials, Functions of a Matrix, Desired Properties of a Matrix, Polymer Matrix (Thermosets and Thermoplastics), Metal matrix, Ceramic matrix, Carbon Matrix, Glass Matrix etc. Types of Reinforcements/fibres: Role and Selection or reinforcement materials, Types of fibres, Glass fibres, Carbon fibres, Aramid fibres, Metal fibres, Alumina fibres, Boron fibres, Silicon carbide fibres, Quartz and Silica fibres, Multiphase fibres, Whiskers, Flakes etc., Mechanical properties of fibres. Material properties that can be improved by forming a composite material and its engineering potential.					
UNIT-I	I Cla	assification of composites:		8 hours	

Classification based on Matrix Material: Organic Matrix composites, Polymer matrix composites (PMC), Carbon matrix Composites or Carbon- Carbon Composites, Metal matrix composites (MMC), Ceramic matrix composites (CMC); Classification based on reinforcements:Fibre Reinforced Composites, Fibre Reinforced Polymer (FRP) Composites, Laminar Composites, Particulate Composites, Comparison with Metals, Advantages & limitations of Composites				
UNIT-III FABRICATION OF COMPOSITES	8 hours			
Fabrication methods: Processing of Composite Materials: Overall considerations, Autoclave curing, Other Manufacturing Processes like filament welding, compression moulding, resin-transplant method, pultrusion, pre-peg layer, Fibre-only performs, Combined Fibre-Matrix performs, Manufacturing Techniques: Tooling and Specialty materials, Release agents, Peel plies, release films and fabrics, Bleeder and breather plies, bagging films Nano Composite: Introduction to Nano Composites, Processing of nano composites, industrial application of nano composites.				
UNIT-IV Properties of Composites	8 hours			
Mechanical Properties -Stiffness and Strength: Geometrical aspects – volume and weight fraction. Unidirectional continuous fibre, discontinuous fibres, Short fibre systems, woven reinforcements –Mechanical Testing: Determination of stiffness and strengths of unidirectional composites; tension, compression, flexure and shear.				
UNIT-V Laminates 8 hours				
Plate Stiffness and Compliance, Assumptions, Strains, Stress Resultants, Plate Stiffness and Compliance, Computation of Stresses, Types of Laminates -, Symmetric Laminates, Antisymmetric Laminate, Balanced Laminate, Quasi-isotropic Laminates, Cross-ply Laminate, Angleply Laminate. Orthotropic Laminate, Laminate Moduli, Hygrothermal Stresses				
Course outcome: After completion of this course students will				
CO 1 Understand various matrices and reinforcements used in composites	K ₂ , K ₃			
CO 2 Know about polymer matrix composites, metal matrix composite matrix composites and its manufacturing and applications	s, ceramic K3			
CO 3 Introduce Fabrication techniques of composites	К3			
CO 4 Determine stresses and strains in composites.	K4			
CO 5 Understand the specifics of mechanical behaviour of composites compared to isotropic materials	layered K ₄ , K ₅			
Text books				
R. M. Jones, Mechanics of Composite Materials, CRC Press				

M. Mukhopadhyay, Mechanics of Composite Materials, University Press

I. S. Daniel and Ori Ishai, Engineering Mechanics of Composite Material, Oxford University Press

Reference Books

K K Chawla, Fibrous Materials, Cambridge University Press.

Thermal Analysis of Materials by R.F. Speyer, Marcel Decker.

Engineering Materials: Polymers, Ceramics and Composites A.K Bhargava Prentice Hall India.

	M. TECH FIRST YEAR							
Cou	ourse Code AMTME0251 LTP Credit							
Cour	rse Title	Automation and Mechatronics Lab	0 0 4	2				
Cour	ırse objective:							
1	To acquire the knowledge on advanced algebraic tools for the description of motion							
2	_	he ability to analyze and design the motion for articul	-					
3	To develop a	n ability to use software tools for analysis and design	of robotic s	ystems.				
			- •					
	T ' 1		Experime					
1	-	out workpiece setting and coordinate setting on Verti	cal Milling	machine.				
2	-	ration on Vertical Milling Machine.						
3	-	operation using canned cycle on Milling Machine.	· 0 /					
4	0	bout workpiece setting and coordinate setting on Turr	ing Center.					
5	0	Machining operation like Turning, Slotting, Facing.						
6	0	operation using canned cycle and Threading on Lathe	machine.					
7		ace Operation on Kuka Kr-10 robot.						
8	0	welding operation using Kuka Kr-10 robot.						
9		controller (Arduino/ Raspberry)						
10 C		nterfacing. ((Arduino/ Raspberry).						
Cour	rse outcome	After completion of this course students will	be able to					
CO1	Set machi	ne coordinate and perform machining operations.		К3				
CO2	Program r	obot and perform operations on it.		K4				
CO3	B Design a c	controller (Arduino/ Raspberry) and programme it.		К3				
CO4	Interface t	he controller with machine.		K4				

	M. TECH FIRST YEAR						
Cour	se Code	AMTME0252	LTP	Credit			
Cour	se Title	Composite Materials Lab	0 0 4	2			
Cour	se objectiv						
1	To understand the metal matrix composite.						
2	To understand the various types of reinforcement.						
3		ne powder metallurgy techniques.					
4		e stresses and strains in composites.					
5	Understan	d the mechanical behaviour of laminated composi	te				
		List	of Experi	ments			
1	Preparation	of Metal matrix Composites.					
2	Preparation	of surface composite by friction stir processing					
3	Study of T	ensile strength and young's modulus of MMCs.					
4	Making of	model on 3D printer by using glass fiber as a reint	forcement ma	aterial into a matrix material of nylon.			
5	Preparation	of composite by powder metallurgy techniques.					
6	Study of F	exural strength of MMCs.					
7	Study of H	ardness of MMCs.					
8	Impact stre	ngth analysis of MMCs					
9	Preparation	of Al-SiC composites by stir casting method.					
10	Study of m	icrostructure, hardness and density of Al-SiC com	posite				
Cour	Course outcome: After completion of this course students will be able to						
C	CO1 P	repare metal matrix composite.]	K2			
C	CO2 D	emonstrate the friction stir processing.]	Χ3			
C	CO3 D	emonstrate the powder metallurgy techniques.]	Χ3			
C	CO4 D	etermine stresses and strains in composites.]	K2			

		M. TECH FIRST YEAR				
Cours	se Code	Code AMTME0211		Credit		
Cours	se Title	Advanced Finite Element Analysis	300	3		
ourse	e Objectives: The	students should be able to				
1	Understand th	e fundamental concepts and different approaches used in Finite Element	t method.			
2	Understand the application of plane stress- strain problem and use of the finite element method for axi-symmetric, heat transfer and fluid flow pro					
3	Understand the	use of the basic finite elements for structural applications using truss, beam, fr	ame and plane elements.			
4	Understand an	d demonstrate the mesh generation used in FEA analysis for design and evalu	ation purpose.			
5	Understand an packages softw	d command the practical application of finite element method to solve r are.	ealistic engineering problems through t	he use of FEM		
	UNIT-I	Introduction to Finite Difference Method		8HOURS		
	conditions, Error UNIT-II	s, Convergence and patch test, Higher order elements. Application to plane stress and plane strain problems		8 HOURS		
		lane stress and plane strain problems, Axi-symmetric and 3D bodie ural stability, Other applications e.g., Heat conduction and fluid flow pro		ropic and anisotro		
	UNIT-III	Idealization of stiffness		8 HOURS		
	Idealization of st	iffness of beam elements in beam-slab problems, Applications of the me	ethod to materially non-linear problem	18		
	UNIT-IV	Organization of the Finite Element programmer		8 HOURS		
	Organization of the Finite Element programmer, Data preparation and mesh generation through computer graphics, Numerical techni problems					
	UNIT-V	FEM an essential component of CAD		8 HOURS		
	FEM an essentia conventional ana	l component of CAD, Use of commercial FEM packages, Finite eleme lysis.	ent solution of existing complete desig	gns, Comparison		

Course	Outcomes: The students would be able to					
CO1	Apply the fundamental concepts and approaches to solve realistic engineering problems.	K ₂ , K ₃				
CO2	Apply the fundamental concepts of boundary conditions to global equation for axi-symmetric, heat transfer and fluid flow problems and solve those displacements, stress and strains induced.	K3				
CO3	Apply the fundamental concepts of FEM for solving trusses frames plate structures machine parts type realistic					
CO4	Apply the various mesh generation techniques for design and evaluation of realistic engineering problems.	K4				
CO5	Develop proficiency in the application of the finite element method (modelling, analysis, and interpretation of results) to realistic engineering problems through the use of a major commercial general-purpose finite element code.	K4, K5				
Text B	ooks					
1	The Finite Element Method O.C. Zienkiewicz and R.L. Taylor McGraw Hill					
2	An Introduction to Finite Element Method J. N. Reddy McGraw Hill					
3	Finite Element Procedure in Engineering Analysis K.J. Bathe McGraw Hill					
4	Finite Element Analysis C.S. Krishnamoorthy Tata McGraw Hill					
Refere	nces Books:					
1	Concepts and Application of Finite Element Analysis R.D. Cook, D.S. Malcus and M.E. Plesha John Wiley					
2	Introduction to Finite Elements in Engineering T.R Chandragupta and A.D. Belegundu Prentice Hall India					
3	Finite Element and Approximation O.C. Zenkiewicy& Morgan					

		M. TECH FIRST YEAR		
Course Code		AMTME0212	LTP	Credit
Course Title		Modern Manufacturing Technology	3 0 0	3
Course objec	ctive:			
1	To understand the	ne non-traditional manufacturing process		
2 To understand the concept of ultrasonic machining.		ne concept of ultrasonic machining.		
3				
4	To describe the	electrochemical machining and hybrid machining		
5	To understand the	ne unconventional welding and forming.		
Pre-requisi	ites:			
		Course Contents / Syllabus		
UNIT-I		Introduction:		7 hours
Need of Non-	-Traditional Machir	ing Processes, ClassificationBased on Energy, Mechanism, so	urce of energy, transfer medi	
		meters, shapes to be machined, process capability and economic		1 ,
UNIT-II		Ultrasonic Machining	· · · · · ·	8 hours
<u> </u>	achining: Principle	5		
Ultrasonic M	0 1	Ultrasonic Machining - Transducer types, Concentrators, Abrasive Slurry ProcessPa ive Jet Machining: Process- Principle, Process Variables – Ma	rameters, Tool Feed Mecha	nism, Advantages and
Ultrasonic M Limitations, A	Applications. Abras	- Transducer types, Concentrators, Abrasive Slurry ProcessPa	arameters, Tool Feed Mecha aterial Removal Rate, Advar	nism, Advantages and tages and Limitations
Ultrasonic M Limitations, A	Applications. Abras	- Transducer types, Concentrators, Abrasive Slurry ProcessPa ive Jet Machining: Process- Principle, Process Variables – Ma	arameters, Tool Feed Mecha aterial Removal Rate, Advar	nism, Advantages and tages and Limitations
Ultrasonic M Limitations, A Applications.	Applications. Abras	- Transducer types, Concentrators, Abrasive Slurry ProcessPa ive Jet Machining: Process- Principle, Process Variables – Ma	arameters, Tool Feed Mecha aterial Removal Rate, Advar	tages and Limitations,
Ultrasonic M Limitations, A Applications. process. UNIT-III	Applications. Abras Water Jet Machinin	- Transducer types, Concentrators, Abrasive Slurry ProcessPa ive Jet Machining: Process- Principle, Process Variables – Ma ng: Principle, Process Variables, Advantages and Limitations, I	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi	nism, Advantages and tages and Limitations, ve water jet machining 8hours
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis	Applications. Abras Water Jet Machinin scharge Machining:	- Transducer types, Concentrators, Abrasive Slurry ProcessPa ive Jet Machining: Process- Principle, Process Variables – Ma ng: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa	nism, Advantages and tages and Limitations, ve water jet machining 8hours rk Erosion Generators,
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis Electrode Fee Advantages a	Applications. Abras Water Jet Machinin scharge Machining: ed System, Material and Limitations, Pra	 Transducer types, Concentrators, Abrasive Slurry ProcessPative Jet Machining: Process- Principle, Process Variables – Mang: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining Mechanism of metal removal, DielectricFluid, Flushingmethod Removal Rate, ProcessParameters, Tool Electrode Design, Touctical Applications. Electrical Discharge Wire Cut and Grind: 	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa ool wear Characteristics of S ing: Principle, Wire Feed Sy	nism, Advantages and tages and Limitations ve water jet machining 8hours rk Erosion Generators park Eroded Surfaces
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis Electrode Fee Advantages a	Applications. Abras Water Jet Machinin scharge Machining: ed System, Material and Limitations, Pra	 Transducer types, Concentrators, Abrasive Slurry ProcessPaive Jet Machining: Process- Principle, Process Variables – Mang: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining Mechanism of metal removal, DielectricFluid, Flushingmethod Removal Rate, ProcessParameters, Tool Electrode Design, Totical Applications. Electrical Discharge Wire Cut and Grindins, Electron Beam Machining, plasma arc machining, laser beam 	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa ool wear Characteristics of S ing: Principle, Wire Feed Sy m machining	nism, Advantages and tages and Limitations, ve water jet machining 8hours rk Erosion Generators, park Eroded Surfaces-
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis Electrode Fee Advantages a	Applications. Abras Water Jet Machinin scharge Machining: ed System, Material and Limitations, Pra	 Transducer types, Concentrators, Abrasive Slurry ProcessPative Jet Machining: Process- Principle, Process Variables – Mang: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining Mechanism of metal removal, DielectricFluid, Flushingmethod Removal Rate, ProcessParameters, Tool Electrode Design, Touctical Applications. Electrical Discharge Wire Cut and Grind: 	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa ool wear Characteristics of S ing: Principle, Wire Feed Sy m machining	nism, Advantages and tages and Limitations ve water jet machining 8hours rk Erosion Generators park Eroded Surfaces
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis Electrode Fee Advantages a Limitations – UNIT-IV	Applications. Abras Water Jet Machining scharge Machining: ed System, Material and Limitations, Pra Practical applicatio	 Transducer types, Concentrators, Abrasive Slurry ProcessPaive Jet Machining: Process- Principle, Process Variables – Mang: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining Mechanism of metal removal, DielectricFluid, Flushingmethod Removal Rate, ProcessParameters, Tool Electrode Design, Totical Applications. Electrical Discharge Wire Cut and Grindins, Electron Beam Machining, plasma arc machining, laser beam 	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa ool wear Characteristics of S ing: Principle, Wire Feed Sy m machining	nism, Advantages and tages and Limitations ve water jet machining Shours rk Erosion Generators park Eroded Surfaces rstem, Advantages and
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis Electrode Fee Advantages a Limitations – UNIT-IV Chemical Ma	Applications. Abras Water Jet Machining: scharge Machining: ed System, Material and Limitations, Pra Practical applicatio chining Process: ma	 Transducer types, Concentrators, Abrasive Slurry ProcessPative Jet Machining: Process- Principle, Process Variables – Mang: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining Mechanism of metal removal, DielectricFluid, Flushingmethod Removal Rate, ProcessParameters, Tool Electrode Design, Toactical Applications. Electrical Discharge Wire Cut and Grindins, Electron Beam Machining, plasma arc machining, laser bea Chemical, Electrochemical and Hybrid Machining Process 	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa ool wear Characteristics of S ing: Principle, Wire Feed Sy m machining s	nism, Advantages and tages and Limitations ve water jet machining Shours rk Erosion Generators park Eroded Surfaces rstem, Advantages and
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis Electrode Fee Advantages a Limitations – UNIT-IV Chemical Ma Electrochemic	Applications. Abras Water Jet Machining: scharge Machining: ed System, Material and Limitations, Pra Practical applicatio chining Process: ma cal Machining process	 Transducer types, Concentrators, Abrasive Slurry ProcessPative Jet Machining: Process- Principle, Process Variables – Mang: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining Mechanism of metal removal, DielectricFluid, Flushingmethod Removal Rate, ProcessParameters, Tool Electrode Design, Totical Applications. Electrical Discharge Wire Cut and Grindins, Electron Beam Machining, plasma arc machining, laser bea Chemical, Electrochemical and Hybrid Machining Process 	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa pol wear Characteristics of S ing: Principle, Wire Feed Sy m machining s	nism, Advantages and tages and Limitations ve water jet machining Shours rk Erosion Generators park Eroded Surfaces rstem, Advantages and 8 hours
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis Electrode Fee Advantages a Limitations – UNIT-IV Chemical Ma Electrochemic	Applications. Abras Water Jet Machining: scharge Machining: ed System, Material and Limitations, Pra Practical applicatio chining Process: ma cal Machining process	 Transducer types, Concentrators, Abrasive Slurry ProcessPaive Jet Machining: Process- Principle, Process Variables – Mang: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining Mechanism of metal removal, DielectricFluid, Flushingmethod Removal Rate, ProcessParameters, Tool Electrode Design, Toactical Applications. Electrical Discharge Wire Cut and Grind: ns, Electron Beam Machining, plasma arc machining, laser bea Chemical, Electrochemical and Hybrid Machining Process Iterial removal mechanism, process parameters, applications. 	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa pol wear Characteristics of S ing: Principle, Wire Feed Sy m machining s	nism, Advantages and tages and Limitations ve water jet machining Shours rk Erosion Generators park Eroded Surfaces rstem, Advantages and 8 hours
Ultrasonic M Limitations, A Applications. process. UNIT-III Electrical Dis Electrode Fee Advantages a Limitations – UNIT-IV Chemical Ma Electrochemic Hybrid machi UNIT-V	Applications. Abras Water Jet Machining: ed System, Material and Limitations, Pra Practical applicatio chining Process: ma cal Machining process: prince	 Transducer types, Concentrators, Abrasive Slurry ProcessPative Jet Machining: Process- Principle, Process Variables – Mang: Principle, Process Variables, Advantages and Limitations, I Electrical Discharge Machining Mechanism of metal removal, DielectricFluid, Flushingmethod Removal Rate, ProcessParameters, Tool Electrode Design, Totactical Applications. Electrical Discharge Wire Cut and Grindins, Electron Beam Machining, plasma arc machining, laser beaterial removal mechanism, process parameters, applications. Eterrial Removal Mechanism, process parameters, applications. 	arameters, Tool Feed Mecha aterial Removal Rate, Advar PracticalApplications, Abrasi ds, Electrode Materials, Spa ool wear Characteristics of S ing: Principle, Wire Feed Sy m machining s tions, cal grinding, electrochemical	nism, Advantages and tages and Limitations ve water jet machining Shours rk Erosion Generators park Eroded Surfaces rstem, Advantages and 8 hours spark machining. 8 hours

Principle of high energy rate forming, explosive forming, electrohydraulic forming, electromagnetic forming, incremental forming processes.

Course outcome: After completion of this course students will be able to

CO 1	understand the concepts of modern manufacturing technology	K1,K2
CO 2	Apply the concept of mechanical processes such as ultrasonic machining, AJM,WJM	K3, K4
CO 3	Understand the concept of electrochemical machining process.	
CO 4	Understand the concept of unconventional welding processes.	K3, K4, K5
CO 5	Apply the concept of unconventional metal forming process.	K3,K4

Books:

1. P.C Pandey And H.S. Shan, "Modern Machining Process", Tata Mc Graw – Hill Publishing Company Limited, New Delhi, 2007.

2. V.K. Jain, "Advanced Machining Process", Allied Publishers Pvt Limited 200.

3. Amitabha Bhattacharyya, "New Technology", The Institution of Engineers, India

4. HMT Bangalore, "Production Technology", Tata Mc Graw-Hill Publishing Company Limited, New Delhi, 2006.

5. Hassan El – Hofy "Advanced machining Processes" MC Graw-Hill, 2005.

		M. TECH FIRST YEAR			
Course C	Code	AMTME0213	L T P	Credit	
Course Title Advance		Advanced Welding Technology	3 0 0	3	
Course o	bjective:				
1	To impart	knowledge on various advanced welding processes so that the studen	ts can apply them in engineering	industry applications.	
2	To gain understanding of heat flow and temperature distribution on weld components based on weld geometry				
3	To develop	p the knowledge on the design of welded joints and the quality contro	ol of weldments.		
4	To acquire	e knowledge and to solve problems associated with failure and to update	ate students on the latest technolo	gy to ensure welded	
		are maintained in good operating condition and at low maintenance co			
5	To impart	knowledge on robotic welding systems as well as learn how to perfor	m basic procedures on a system.		
Pre-requ	isites:				
		Course Contents / Syllabus			
UNIT-I					
alloying el	s compared ements on	l with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a	lluminum and titanium alloys, V	Veld testing standard	
alloying el Hydrogen e	s compared ements on embrittleme	with other fabrication processes, Classification of welding processes	luminum and titanium alloys, V ansfer and solidification, Analysi	aracteristics; Effects of Veld testing standards s of stresses in welde	
alloying el Hydrogen structures, UNIT-II	s compared ements on embrittleme Pre and pos	with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a ent, Lamellar tearing, residual stresses and its measurement, heat tra st welding heat treatments, Metallurgical aspects of joining, Condition Weld Design & Quality Control:	luminum and titanium alloys, Wansfer and solidification, Analysins of soldering, Brazing and weldi	aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials 12 hour	
alloying el Hydrogen o structures, UNIT-II Welding as alloying el Hydrogen o	s compared ements on embrittleme Pre and pos s compared ements on embrittleme	l with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a ent, Lamellar tearing, residual stresses and its measurement, heat tra- st welding heat treatments, Metallurgical aspects of joining, Condition	aluminum and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi es; Heat affected zone and its cha luminium and titanium alloys, W ansfer and solidification, Analysi	aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials 12 hour aracteristics; Effects of Veld testing standards s of stresses in welde	
alloying el Hydrogen o structures, UNIT-II Welding as alloying el Hydrogen o structures,	s compared ements on embrittleme Pre and pos s compared ements on embrittleme Pre and pos	 I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Weld Design & Quality Control: I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and al ent, Lamellar tearing, residual stresses and its measurement, heat transfer to the stresses weldability, Weldability of steels, stainless steel, cast iron, and al ent, Lamellar tearing, residual stresses and its measurement, heat transfer tearing, residual stresses and its measurement. 	aluminum and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi es; Heat affected zone and its cha luminium and titanium alloys, W ansfer and solidification, Analysi	aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials 12 hour aracteristics; Effects of Veld testing standards s of stresses in welde	
alloying el Hydrogen o structures, UNIT-II Welding as alloying el Hydrogen o structures, UNIT-III Friction we	s compared ements on embrittleme Pre and pos s compared ements on embrittleme Pre and pos l elding, Exp	 I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Weld Design & Quality Control: I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and al ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition and al ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Modern Trends in Welding: 	aluminum and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi es; Heat affected zone and its cha luminium and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi	aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials 12 hour aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials. 8 hour	
alloying el Hydrogen o structures, UNIT-II Welding as alloying el Hydrogen o structures, UNIT-III Friction we	s compared ements on embrittleme Pre and pos s compared ements on embrittleme Pre and pos l elding, Exp	 I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Weld Design & Quality Control: I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and al ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition and al ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Modern Trends in Welding: 	aluminum and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi es; Heat affected zone and its cha luminium and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi	aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials 12 hour aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials. 8 hour	
alloying el Hydrogen o structures, UNIT-II Welding as alloying el Hydrogen o structures, UNIT-III Friction we arc welding UNIT-IV	s compared ements on embrittleme Pre and pos s compared ements on embrittleme Pre and pos I elding, Exp g, Laser wel	 I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Weld Design & Quality Control: I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and al ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Modern Trends in Welding: Dosive welding, Diffusion bonding, High frequency induction welding. Repair Welding and Reclamation: 	luminum and titanium alloys, Wansfer and solidification, Analysi as of soldering, Brazing and weldi es; Heat affected zone and its cha luminium and titanium alloys, Wansfer and solidification, Analysi as of soldering, Brazing and weldi ng, Ultrasonic welding, Electron	aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials 12 hour aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials. 8 hour beam welding, Plasm	
alloying el Hydrogen o structures, UNIT-II Welding as alloying el Hydrogen o structures, UNIT-III Friction we arc welding UNIT-IV Engineerin steel castin	s compared ements on embrittleme Pre and pos s compared ements on embrittleme Pre and pos I elding, Exp g, Laser we g aspects o g and cast	 I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Weld Design & Quality Control: I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and al ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Modern Trends in Welding: Dosive welding, Diffusion bonding, High frequency induction welding. 	aluminum and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi es; Heat affected zone and its cha luminium and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi ng, Ultrasonic welding, Electron	aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials 12 hour aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials. 8 hour beam welding, Plasm 8 hour or components made of	
alloying el Hydrogen o structures, UNIT-II Welding as alloying el Hydrogen o structures, UNIT-III Friction we arc welding UNIT-IV Engineerin steel castin	s compared ements on embrittleme Pre and pos s compared ements on embrittleme Pre and pos ledding, Exp g, Laser wel g aspects o g and cast or various v	I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and a ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Weld Design & Quality Control: I with other fabrication processes, Classification of welding processes weldability, Weldability of steels, stainless steel, cast iron, and al ent, Lamellar tearing, residual stresses and its measurement, heat trast welding heat treatments, Metallurgical aspects of joining, Condition Modern Trends in Welding: Dosive welding, Diffusion bonding, High frequency induction welding. Repair Welding and Reclamation: of repair, aspects to be considered for repair welding, techno-econom iron, half bead, temper bead techniques, usage of Ni base filler meta	aluminum and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi es; Heat affected zone and its cha luminium and titanium alloys, W ansfer and solidification, Analysi as of soldering, Brazing and weldi ng, Ultrasonic welding, Electron	aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials 12 hour aracteristics; Effects of Veld testing standards s of stresses in welde ng of materials. 8 hour beam welding, Plasm 8 hour or components made of	

robots, Self-alignment by current arc variation, Robots for car body welding, Microelectronic welding and soldering, Efficiency of robotics in welding.

Course ou	tcome: After completion of this course students will be able to	
CO 1	Identify and understand the concepts of welding	K1,K2
CO 2	Analyze peak temperatures, HAZ stresses and to prevent distortions	K3, K4
CO 3	Analyze and predict the life of weld joints subjected to fatigue and evaluate the effect of stress concentration on fatigue life of such joints.	K4
CO 4	Selection of repair welding and apply techno-economics for practical problems.	K3, K4, K5
CO 5	Use appropriate safety precautions while programming and operating the robot system	K3,K4
Books:		
1. Advanced	Welding Processes Nikodaco&Shansky MIR Publications	
2. Welding 7	Cechnology and Design VM Radhakrishnan New Age International	
3. Source Bo	ok of Innovative welding Processes M.M. SchwarizAmerican Society of Metals (Ohio)	
4. Advanced	Welding Systems, Vol. I, II, III J. CornuJaico Publishers	
5. Manufactu	uring Technology (Foundry, Forming and Welding) P.N. Rao Tata McGraw Hill	
6. Welding p	rinciples and practices by Edward R. Bohnart, Mc. Graw Hill Education, 2014.	
7. Welding a	nd Welding technology, Richard L little, Mc. Graw Hill Education	
-	processes and Technology – Dr.ParmarRS	
	processes and Technology – O.P Khanna	
	Forming and Welding, P.N.Rao 2 nd Edition TMH	

		M. TECH FIRST YEAR		
Course C	Code	AMTME0214	L T P	Credit
Course Title		Computational Fluid Dynamics (CFD)	3 0 0	3
Course ob	jective:			
This course	e enables stu	idents to		
1.		To provide brief introduction of Computational Fluid Dynamics enriched with topoblems.	the analysis of fluid mechanics an	d heat transfer related
		Course Contents / Syllabus		
UNIT-I	I	INTRODUCTION		8 hours
Introductio	on, Conservat	tion equation, Mass Momentum and Energy equations, Convective form of	of the equation and general desc	ription.
UNIT-II	B	Boundary and initial conditions		8 hours
a 1 1 a				
Clarificatio	on into variou	us types of equation, Parabolic, Elliptic, Boundary and initial conditions,	Overview of numerical methods	S
UNIT-III	F	Finite difference methods		8 hours
UNIT-III Finite different function methods boundary c	F erence method hethod; Finite conditions; B	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tre	r series expansion, Integration ison for convection-diffusion pr	8 hours over element, Local oblem, Treatment of
UNIT-III Finite diffe	F erence method hethod; Finite conditions; B	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari	r series expansion, Integration ison for convection-diffusion pr	8 hours over element, Local oblem, Treatment of
UNIT-III Finite diffe function m boundary c UNIT-IV	Ference method hethod; Finite conditions; B S of finite diffe	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tre	r series expansion, Integration ison for convection-diffusion pre- eatment, Accuracy of F.D. metho	8 hours over element, Local oblem, Treatment of od. 8 hours
UNIT-III Finite differ function me boundary c UNIT-IV Solution of	Ference methor nethod; Finite conditions; B S of finite diffe	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tre Solution of finite difference equations	r series expansion, Integration ison for convection-diffusion pre- eatment, Accuracy of F.D. metho	8 hours over element, Local oblem, Treatment of od. 8 hours
UNIT-III Finite diffe function m boundary c UNIT-IV Solution of application UNIT-V Phase char	Ference methor nethod; Finite conditions; B S of finite diffens P nge problem	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tre Solution of finite difference equations erence equations; Iterative methods; Matrix inversion methods, ADI m	r series expansion, Integration ison for convection-diffusion pre- eatment, Accuracy of F.D. methor nethod, Operator splitting, Fast	 8 hours over element, Local oblem, Treatment of od. 8 hours Fourier Transform 8 hours nensional elements,
UNIT-III Finite diffe function m boundary c UNIT-IV Solution of application UNIT-V Phase char	Ference methor nethod; Finite conditions; B S of finite diffens P nge problem	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tree Solution of finite difference equations erence equations; Iterative methods; Matrix inversion methods, ADI methods, ADI methods, Rayleigh-Ritz, Galerkin and Least square methods; Interpolation ange problems; Different approaches for moving boundary; Variable time	r series expansion, Integration ison for convection-diffusion pre- eatment, Accuracy of F.D. methor nethod, Operator splitting, Fast	 8 hours over element, Local oblem, Treatment of od. 8 hours Fourier Transform 8 hours nensional elements,
UNIT-III Finite diffe function m boundary c UNIT-IV Solution of application UNIT-V Phase char	Ference method; Finite conditions; B S of finite diffens Nge problem ns. Phase cha	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tree Solution of finite difference equations erence equations; Iterative methods; Matrix inversion methods, ADI methods, ADI methods, Rayleigh-Ritz, Galerkin and Least square methods; Interpolation ange problems; Different approaches for moving boundary; Variable time	r series expansion, Integration ison for convection-diffusion pre- eatment, Accuracy of F.D. methor nethod, Operator splitting, Fast	 8 hours over element, Local oblem, Treatment of od. 8 hours Fourier Transform 8 hours nensional elements,
UNIT-III Finite diffe function m boundary c UNIT-IV Solution or application UNIT-V Phase char Application	F erence method; Finite hethod; Finite conditions; B S of finite difference hethod; Finite nge problem ns. Phase char Course Ou Understand Apply bound	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tree Solution of finite difference equations erence equations; Iterative methods; Matrix inversion methods, ADI methods, ADI methods; Matrix inversion methods, ADI methods, Rayleigh-Ritz, Galerkin and Least square methods; Interpolation ange problems; Different approaches for moving boundary; Variable time utcome: the various governing equations related to CFD. dary condition & initial conditions.	r series expansion, Integration ison for convection-diffusion pre- eatment, Accuracy of F.D. methor nethod, Operator splitting, Fast	8 hours over element, Local oblem, Treatment of od. 8 hours Fourier Transform 8 hours nensional elements,
UNIT-III Finite differ function me boundary c UNIT-IV Solution of application UNIT-V Phase char Application	Ference method; Finite conditions; B S of finite diffents Name problem ns. Phase char Course Ou Understand Apply bound Apply Finite	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tre Solution of finite difference equations erence equations; Iterative methods; Matrix inversion methods, ADI m Phase change problems ns, Rayleigh-Ritz, Galerkin and Least square methods; Interpolation ange problems; Different approaches for moving boundary; Variable time utcome: the various governing equations related to CFD. dary condition & initial conditions. e Difference and Finite Volume methods in CFD modelling	r series expansion, Integration ison for convection-diffusion pre- eatment, Accuracy of F.D. methor nethod, Operator splitting, Fast	8 hours over element, Local oblem, Treatment of od. 8 hours Fourier Transform 8 hours nensional elements, K2
UNIT-III Finite differ function me boundary c UNIT-IV Solution of application UNIT-V Phase char Application CO1 CO2	Ference method; Finiteaethod; Finiteconditions; BSof finite differenceof finite differencenge problemns. Phase chaseCourse OutUnderstandApply boundApply FiniteEvaluate the	Finite difference methods ods; Different means for formulating finite difference equations, Taylor e volume methods; Central, upwind and hybrid formulations and compari Boundary layer treatment; Variable property, Interface and free surface tree Solution of finite difference equations erence equations; Iterative methods; Matrix inversion methods, ADI methods, ADI methods; Matrix inversion methods, ADI methods, Rayleigh-Ritz, Galerkin and Least square methods; Interpolation ange problems; Different approaches for moving boundary; Variable time utcome: the various governing equations related to CFD. dary condition & initial conditions.	r series expansion, Integration ison for convection-diffusion pre- eatment, Accuracy of F.D. methor nethod, Operator splitting, Fast	8 hours over element, Local oblem, Treatment of od. 8 hours Fourier Transform 8 hours nensional elements, . K2 K3

Name of Aut	Name of Authors/ Books / Publisher					
1	Computational Methods for Fluid Dynamics					
2	Principles of Heat Transfer					
3	Radiative Heat Transfer					
4	Computational Fluid Dynamics					

		M. TE	CH FIRST	YEAR	
Course	e Code	AMTME0215	LTP	Credit	
Course	Title	Advanced Mechanics of Solids	300	3	
Course of	objective:		L		
This cou	rse enables	students to			
2. Solve advanced solid mechanics problems using classical meth			al methods	ethods	
3.	3. Understand behaviour of machine and structure under various loading conditions				
4.		0		naterials like isotropic, anisotropic, hyper elastic and viscoelastic	
5.			ble not only in	solid mechanics but also in heat transfer, fluid mechanics and	
	acoustic	diffusion			
6.		nd principle of virtual work and time dependen			
7.			which the studen	ts are encouraged to solve problems on advanced solid mechanics	
	and in the	s way to improve their solving skills.			
		Course Co	ontents / Syll	abus	
UNIT-I	INTRO	DUCTION		3 hours	
coordina and Gree Kinetics conserva the assoc second P	te transform en's), princ of Deform tion of line ciated plan Piola-Kirch	mation, transformation rules for the <i>n</i> th order to ipal value theorem, eigenvalues and eigenvector nation: Types of forces (point, surface and bo ear and angular momentum, stress equilibrium es, 3D Mohr's circle representation, planes of off stress tensors and their properties.	ensors, element ors, invariants of ody), traction ve equations, symmet f maximum she	ector, state of stress at a point, Cauchy's relation and its proof netry of stress tensor, stress transformation, principal stresses and ar, octahedral planes, hydrostatic and deviatoric stress, first and	
UNIT-II	_	matics of Deformation		8 hours	
gradients compone	s, Green-L ents and si	agrange and Almansi strain tensor; Cauchy's	small strain ter	agrangian description of motion; deformation and displacement nsor and the rotation tensor, geometrical interpretation of strain ints, octahedral strain, maximum shear strain, volumetric strain,	

UNIT-III	Constitutive Modelling 8	8 hours
	Modelling: Thermodynamic principles, first and second law of the	
	ants and their relations, anisotropic, hyper elastic and viscoelastic m	aterial models, strain hardening, constitutive relations for elasto-
4	ials, flow and hardening rules.	
UNIT-IV		8 hours
	alue Problems in Linear Elasticity: Field equations and boundary con	
	D approximations (plane stress and plane strain) and solution strategi	
UNIT-V		8 hours
types of bou	Principles in Solid Mechanics: Elements of variational calculus, extrem ndary conditions, principle of virtual work, Principle of total potentia roblems and Hamilton's principle for continuum.	
	Course Outcome:	
CO1	Students who successfully complete this course obtains advanced	K2
	information on Advanced Mechanics of Solids and will be able to	
CO2	Solve mechanics problem using matrix, vector and use element of tensor calculus.	К3
CO3	Learn about the elastic and plastic behaviour of material and evaluate stress invariants, principal stresses and their directions	К3
CO4	Determine strain invariants, principal strains and their directions	КЗ
CO5	Understand the theory of elasticity including strain/displacement,	K4
	Hooke's law for isotropic material, elastic constants and their relationships	
	thors/ Books / Publisher	
	I.H., "Elasticity Theory Applications and Numerics", Elsevier Acader	
	A.P., Sidebottom, O. M., "Advanced Mechanics of Materials", 5th Ed	I., John Wiley and Sons
	A.K., "Mechanics of Solids", PHI Learning Private Limited	TT'11
	enko, S.P., and Goodier, J.M., "Theory of Elasticity", 3rd Ed., McGra	
	L.S., "Advanced Mechanics of Solids", Tata McGraw Hill Education	Private Limited
6 Fung, Y	Y.C., "Foundations of Solid Mechanics", Prentice Hall Inc.	

M. TECH FIRST YEAR				
Course Code	AMTME0216	LTP	Credit	
Course Title	Optimization Techniques	300	3	
Course Objectives: 7	The students should be able to	i	I	
1	To introduce various optimization techniques i.e. classical, line algorithm, dynamic programming	ear programming, transporta	ation problem, simplex	
2	Constrained and unconstrained optimization techniques for sol engineering circuits design problems in real world situations.	lving and optimizing an el	lectrical and electronic	
3	To explain the concept of Dynamic programming and its application	ns to project implementation		
4	To introduce various Advanced optimization techniques i.e. integer simulated annealing	and geometric programming	g, genetic algorithm and	

UNIT – I	Introduction	8 HOURS		
objective functio Optimization, m Optimization with	Introduction and Classical Optimization Techniques: Statement of an Optimization problem, design vector, design constraints, constraint surface objective function, objective function surfaces, classification of Optimization problems. Classical Optimization Techniques: Single variable Optimization, multi variable Optimization without constraints, necessary and sufficient conditions for minimum/maximum, multivariable Optimization with equality constraints. Solution by method of Lagrange multipliers, Multivariable Optimization with inequality constraints, Kuhn Tucker conditions.			
UNIT-II	Linear Programming	8 HOURS		
solution of a syst	ming : Standard form of a linear programming problem – geometry of linear programming problems – definition em of linear simultaneous equations – pivotal reduction of a general system of equations – motivation to the n. Transportation Problem: Finding initial basic feasible solution by north – west corner rule, least cost m	simplex method -		

UNIT-III	Unconstrained Nonlinear Programming	8 HOURS
	d Nonlinear Programming: One dimensional minimization. methods, Classification, Fibonacci method and Quanstrained Optimization Techniques: Univariant method, Powell's method and steepest descent method.	dratic interpolatio
UNIT-IV	Dynamic programming	8 HOURS
Dynamic pro	gramming: Evolutionary algorithms: Genetic Algorithm, concepts of multiobjective optimization, Markov Process	, Queuing Model
		8 HOURS

Cours	e Outcomes: The students would be able to	
CO	describe the need of optimization of engineering systems	K2
CO	understand optimization of mechanical systems and formulate the optimization problems.	К3
CO	apply classical optimization techniques, linear programming, simplex algorithm, transportation problem	К3
CO	apply unconstrained optimization and constrained non-linear programming and dynamic programming	K4
CO	5 Understand the advanced optimization techniques.	К3
Text B 1	ook Singiresu S. Rao, Engineering Optimization: Theory and Practice by John Wiley and Sons, 4th edition, 2009.	
2	H. S. Kasene& K. D. Kumar, Introductory Operations Research, Springer (India), Pvt. Ltd., 2004	
REFE	RENCE BOOKS:	
4	George Bernard Dantzig, Mukund Narain Thapa, "Linear programming", Springer series in operations research 3rd ed	dition, 2003.
5	H.A. Taha, "Operations Research: An Introduction", 8th Edition, Pearson/Prentice Hall, 2007.	
6	Kalyanmoy Deb, "Optimization for Engineering Design – Algorithms and Examples", PHI Learning Pvt. Ltd, New D	elhi 2005

		M. TECH FIRST YEAR		
Course C	Code	AMTME0217	L T P	Credit
Course T	Title	Artificial Intelligence and Machine Learning (AIML)	300	3
Course o	bjectives:			
1		e basic concepts, theories and techniques of Artificial intelligence.		
2		asic concepts and applications of Machine learning.		
3	Help students t	o learn the application of AI / Machine learning		Γ
Pre-requ				
Students sh	ould have basic	knowledge computers, general engineering and mathematics.		
		Course Contents / Syllabus		
UNIT-I		FUNDAMENTALS OF AI		8 hours
Introdu	ction to AI, Hist	ory of AI, Intelligent Systems, Types of Intelligence		
		rch Areas of AI		
- Agents	and Environme	nts		
UNIT-II		SEARCH TECHNIQUES AND KNOWLEDGE REPRESENTATION	ON	8 hours
• State Sp algorith	· · ·	pes of search -BFS, DFS, Bidirectional Search, Heurisitc search - Hill Cl	imbing, Beam Search Best	First, A* search
- Knowle	edge Representa	tion, Relational knowledge, Knowledge representation as logic, Semantic	e Network, Frame based kn	owledge.
UNIT-II	[SCOPE OF AI		8 hours
	Language Proc	essing		
-	Systems			
	Logic Systems			
Neural	Networks			1
UNIT-IV	7	INTRODUCTION TO MACHINE LEARNING		10 hours
- Introdu	ction to Machin	e learning systems.		<u> </u>
		Insupervised Learning and Deductive Learning.		

- Artificial N	leural Netwo	orks	
UNIT-V Applications 81		nours	
- Image and	face recogni	ition,	
- Object reco	ognition,		
- Speech Rec	cognition be	esides Computer Vision,	
- Automatior	n and Robot	ics	
Course outc	ome:	After completion of this course students will be able to	
CO 1	Learn the	e fundamentals of AI with engineering perspectives.	K_2
CO 2		and concept of knowledge representation and predicate logic and transform the real-life information representation.	in K ₂
CO 3	Understa	and state space and its searching strategies.	\mathbf{K}_2
CO 4	Understa	and machine learning concepts and range of problems that can be handled by machine learning.	K ₂
CO 5	Understa	and the concepts of face, object, speech recognition and automation & robotics.	K ₂
Text &Refe	rence boo	ks	
		t, "Artificial Intelligence", 2/E, TMH, 1991.	
		Jr., Robotics and AI: "An Introduction to Applied Machine Intelligence", Prentice Hall ,1987.	
		ig, "Artificial Intelligence: A Modern Approach", 2/E, Prentice Hall, 2003.	
•		Bunke, "Applications of AI, Machine Vision and Robotics" World Scientific Pub Co., 1995. gramming for Artificial Intelligence", 3/E, Addison-Wesley, 2001.	
		Recognition and Machine Learning", Springer, 2003.	
o. C. M. Dish	^o F, 1 uttern	Recognition and Fractime Dourning, Springer, 2005.	

Course Code	M. TECH FIRST YE		Credit
			3
Course Title	Management Information System	500	3
Course objecti			
	e students Identify and understand the role of MIS in business and ma	8	
	ne problems pertaining to conceptual information and detailing inform		
	e students Evaluate and differentiate various information systems and		
	will be able to understand the strategic and project planning and role		n making.
	e students integrate information system to ERP, and other Enterprise-	wide systems along-with ethics.	
Pre-requisites:	The student should have knowledge of Manufacturing science		
	Course Contents / Sylla	bus	
UNIT-I	Introduction to Flexible manufacturing system		8 hours
Introduction; Me	eaning and definition of management information systems (MIS); Sys	stems approach;Role of MIS in fac	
Introduction; Me in business and m	caning and definition of management information systems (MIS); Systanagement.		cing increasing complexity
Introduction; Me in business and m Conceptual info	eaning and definition of management information systems (MIS); Systemation systems (MIS); Systemation systems design; Problem Definition; setting system objective	res; Establishingsystem constraints	cing increasing complexity
Introduction; Me in business and m Conceptual infor needs; Determinin	eaning and definition of management information systems (MIS); Systemagement. mation systems design; Problem Definition; setting system objectives information sources; Developing alternative conceptual designs; Developing alternative concep	res; Establishingsystem constraints	cing increasing complexity s; Determining information
Introduction; Me in business and m Conceptual infor needs; Determinin UNIT-II	eaning and definition of management information systems (MIS); Systemagement. mation systems design;Problem Definition; setting system objective information sources; Developingalternative conceptual designs; Do Detailing information systems design	res; Establishingsystem constraints ocumenting the conceptual designs	cing increasing complexity s; Determining information 8 hours
Introduction; Me in business and m Conceptual infor needs; Determinin UNIT-II Detailing inform	 baning and definition of management information systems (MIS); Systemagement. cmation systems design; Problem Definition; setting system objective ag information sources; Developingalternative conceptual designs; Do Detailing information systems design ation systems design; Informing and involving the organization; Pro- 	res; Establishingsystem constraints ocumenting the conceptual designs	cing increasing complexity s; Determining information 8 hours
Introduction; Me in business and m Conceptual infor needs; Determinin UNIT-II Detailing inform criteria; Subsyster	 caning and definition of management information systems (MIS); Systemagement. mation systems design; Problem Definition; setting system objective information sources; Developingalternative conceptual designs; Do Detailing information systems design ation systems design; Informing and involving the organization; Pron definition and sources. 	res; Establishingsystem constraints ocumenting the conceptual designs	cing increasing complexity s; Determining information 8 hours ving dominant and tradeof
Introduction; Me in business and m Conceptual infor needs; Determinin UNIT-II Detailing inform criteria; Subsyster UNIT-III	 baning and definition of management information systems (MIS); Systemagement. cmation systems design; Problem Definition; setting system objective ag information sources; Developingalternative conceptual designs; Do Detailing information systems design ation systems design; Informing and involving the organization; Pron definition and sources. Evaluation of information systems 	res; Establishingsystem constraints ocumenting the conceptual designs oject management of MIS; Identify	cing increasing complexity s; Determining information
Introduction; Me in business and m Conceptual infor needs; Determinin UNIT-II Detailing inform criteria; Subsysten UNIT-III Evaluation of in	 baning and definition of management information systems (MIS); Systemagement. constraints mation systems design; Problem Definition; setting system objective g information sources; Developingalternative conceptual designs; Developingalternative conceptualt	res; Establishingsystem constraints ocumenting the conceptual designs oject management of MIS; Identify	cing increasing complexity s; Determining information
Introduction; Me in business and m Conceptual infor needs; Determinin UNIT-II Detailing inform criteria; Subsyster UNIT-III Evaluation of in Marketing inform	 aning and definition of management information systems (MIS); Systemagement. mation systems design; Problem Definition; setting system objective ag information sources; Developingalternative conceptual designs; Do Detailing information systems design ation systems design; Informing and involving the organization; Pron definition and sources. Evaluation of information systems formation systems; Basic information systems; Financial information systems; Personal informationsystem etc. 	res; Establishingsystem constraints ocumenting the conceptual designs oject management of MIS; Identify	cing increasing complexity s; Determining information
Introduction; Me in business and m Conceptual infor- needs; Determinin UNIT-II Detailing inform criteria; Subsyster UNIT-III Evaluation of in Marketing inform UNIT-IV	 baning and definition of management information systems (MIS); Systemagement. cmation systems design; Problem Definition; setting system objective information sources; Developingalternative conceptual designs; Developingalternation; Systems design; Evaluation of information systems; Financial information systems; Personal informationsystem etc. 	res; Establishingsystem constraints ocumenting the conceptual designs oject management of MIS; Identify ion systems; Production and opera	cing increasing complexity s; Determining information
Introduction; Me in business and m Conceptual infor- needs; Determinin UNIT-II Detailing inform criteria; Subsyster UNIT-III Evaluation of in Marketing inform UNIT-IV	 aning and definition of management information systems (MIS); Systemagement. mation systems design; Problem Definition; setting system objective ag information sources; Developingalternative conceptual designs; Do Detailing information systems design ation systems design; Informing and involving the organization; Pron definition and sources. Evaluation of information systems formation systems; Basic information systems; Financial information systems; Personal informationsystem etc. 	res; Establishingsystem constraints ocumenting the conceptual designs oject management of MIS; Identify ion systems; Production and opera	cing increasing complexity s; Determining information
Introduction; Me in business and m Conceptual informeds; Determining UNIT-II Detailing inform criteria; Subsyster UNIT-III Evaluation of ins Marketing inform UNIT-IV Information system	 baning and definition of management information systems (MIS); Systemagement. cmation systems design; Problem Definition; setting system objective information sources; Developingalternative conceptual designs; Developingalternation; Systems design; Evaluation of information systems; Financial information systems; Personal informationsystem etc. 	res; Establishingsystem constraints ocumenting the conceptual designs oject management of MIS; Identify ion systems; Production and opera	cing increasing complexity s; Determining information
Introduction; Me in business and m Conceptual infor needs; Determinin UNIT-II Detailing inform criteria; Subsyster UNIT-III Evaluation of in Marketing inform UNIT-IV Information syst project planning. UNIT-V Enterprisewide in	 aning and definition of management information systems (MIS); Systemagement. mation systems design; Problem Definition; setting system objective information sources; Developingalternative conceptual designs; Developingalternation systems design ation systems design; Informing and involving the organization; Programation systems; Financial information systems; Personal information systems; Financial information systems; Personal informationsystem etc. Information systems for decision making ems for decision making; Programmed and non-programmed decision 	res; Establishingsystem constraints ocumenting the conceptual designs oject management of MIS; Identify fon systems; Production and operation ions; Components of decision supp	cing increasing complexity s; Determining information s. 8 hours ving dominant and tradeof 8 hours tions information systems 8 hours port systems, Strategic and 8 hours rnal organizations; Virtua

Course ou	tcome: After completion of this course students will be able to	
CO 1	Define MIS and its involvement in Business and Management	K ₂ , K ₃
CO 2	Discuss and define the problems related to design of conceptual and detailing information system.	K3
CO 3	Evaluate and differentiate various information system along with their economics and utilization.	К3
CO 4	Understand and implement information system for decision making.	K4
CO 5	Implement and utilize enterprise wise information system.	K4, K5
Text book	s& Reference Books	I
•	ent Information Systems O' Brien, J Tata McGraw Hill	
0	ent Information Systems W.S. Jawedker Tata McGraw Hill	
0	ent Information Systems S Sadagopan Prentice Hall of India	
4. An Inform	nation System for Modern Management R.G. Mudrick Pearson	
5. Managem	ent Information Systems M. Jaiswal Oxford University Press	

		M. TECH FIRST YEAR		
Course Cod	e	AMTME0219	LTP	Credit
Course Title	Course TitleFlexible Manufacturing System300			
Course obje	ective:	-	i	
1	Student will l	earn the flexible manufacturing system.		
2	Student will l	earn the data-based management system.		
3	Student will u	nderstand the group technology.		
4	Student will l	earn the coordinate measuring machine tool.		
5	Student will u	inderstand the material requirement planning system.		
Pre-requisit	es:The studen	t should have knowledge of Manufacturing science		
A		Course Contents / Syllabus		
UNIT-I	Intro	duction to Flexible manufacturing system		8 hours
manufacturing stations. Mate	system. Flexi rial handling	to manufacturing system, different type of manufacturing s ble Manufacturing System: Components of an FMS, types of and storage system: Functions of the handling system, FMS omputer function, FMS data file, system reports planning the FM	f system, where to apply FMS te S layout configuration, Material	chnology, FMS wor handling equipment
UNIT-II		outed data processing in FMS	vis, analysis include for 1 wis, app	8 hour
Distributed d CAM - Part pr	ata processing ogramming in	g in FMS: DBMS and their applications in CAD/CAM and FM FMS, tool data base - Clamping devices and fixtures data base. s of industrial robots - robot cell design and control- AS/RS		
UNIT-III		Technology		8 hours
Group Techn part concept, t	ypes of cell des	nilies, part classification and coding. Types of classification and sign. Determining the best machine arrangement, benefits of groction: Lean Production and Waste in Manufacturing, just in time	oup technology.	lesign: The composite
UNIT-IV	Introd	uction of FMS		8 hours
computer cont	rol – types of s simulation – 1	of FMS– hierarchy of computer control –computer control of oftware specification and selection – trends. nodel of FMS– simulation software – limitation – manufacturi		

UNIT-V	Production Planning and control systems	8 hours
Production	Planning and control systems: Aggregate Production Planning and the master production schedul	le, Material Requirements and
0 1	pacity planning, shop floor control, inventory control, extensions of MRP CMM types: contact and non g and operation-in cycle gauging	-contact inspection principles -
Course ou	tcome: After completion of this course students will be able to	
CO 1	Understand the components of flexible manufacturing system	K ₂ , K ₃
CO 2	Apply the concept of data-based management system for integration of CAD and CAM	К3
CO 3	Understand the concept of part family formation and cell design.	K3
CO 4	Understand the concept of automated material handling system	K4
CO 5	Understand the different module of MRP and CMM	K4, K5
Text book	s& Reference Books	
	akrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New Age International Ltd.,	
	f, A. and Ben-Daya, M., Editors, "Flexible manufacturing systems: recentdevelopment", Elsevier Scienc	
3. Groo	ver M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of I	India Pvt., New Delhi, 1996.

4. Kalpakjian, "Manufacturing Engineering and Technology", Addison-Wesley Publishing Co., 1995.

		M. TECH FIRST YEAR		
Course	Code	AMTME0220	LTP	Credit
Course 7	Course TitleMachine Vision3 0 0			
Course of	objective:			
1		cepts of Physics behind Digital Image Processing.		
2	Illustrating the Me	thods of Image Acquisition.		
3	Applying the differ	rent knowledge in different types image Processing.		
4	Developing knowl	edge of different types analysing the Captured Image.		
5	Implementing at th	e idea about Machine Vision Applications.		
		Course Contents / Syllabus		
UNIT-I	IN	TRODUCTION		8 hours
Optical Fi	nstraints – Lighting F lters, Specifications –Digital Camera Int	IAGE ACQUISITION Parameters – Lighting Sources, Selection – Lighting Techniques – Type and Selection – Imaging Sensors – CCD and CMOS, Specifications – erfaces – Camera Computer Interfaces, Specifications and Selection	Interface Architecture	es – Analog and Digital
UNIT-II	I IN	IAGE PROCESSING		8 hours
Point Ope		undamentals of Digital Image – Image Acquisition Modes – Image P., Greyscale Stretching – Neighbourhood Operations, Image Smoothin rocessing.	0 1	1 1
UNIT-IV		IAGE ANALYSIS		8 hours
	xtraction – Region F es – Decision Making	eatures, Shape and Size Features – Texture Analysis – Template Mate	ching and Classificatio	n – 3D Machine Vision
UNIT-V		ACHINE VISION APPLICATIONS		8 hours
		in Manufacturing, Electronics, Printing, Pharmaceutical, Textile, Appl d and Service Applications – Agricultural, and Bio Medical Field, Aug		

Course ou	come: After completion of this course students will be able to	
CO 1	Explain the concepts of Physics behind Digital Image Processing.	K3
CO 2	Illustrate the Methods of Image Acquisition.	K2
CO 3	Apply the different knowledge in different types image Processing.	K3
CO 4	Develop knowledge of different types analysing the Captured Image.	K4
CO 5	Implement at the idea about Machine Vision Applications.	K4
Text books		
	Horn berg, "Hand Book of Machine Vision", Wiley-VCH, 2006.	
2. Davies E.	R., "Machine Vision Theory, Algorithms and Practicalities", Elsevier, 2005.	
Reference	Books	
	n, "Understanding and Applying Machine Vision", Marcel Decker, 2000.	
2. Bruce Bac	nelor and Frederick Waltz, "Intelligent Machine Vision Techniques, Implementations and Applications",	Springer-Verlag, 2001.
8. Rafael C.	Gonzales, Richard. E. Woods and Steven L. Eddins, "Digital Image Processing Using MATLAB", McGra	aw Hill Education, 2014.
. Milan Son	ka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Cengage Learni	ing, 2014.
5. Malay K. I	Pakhira, "Digital Image Processing and Pattern Recognition", PHI Learning, 2011.	
5. Chanda B.	and Dutta Majumder D., "Digital Image Processing and Analysis", PHI Learning, 2011.	

M. TECH FIRST YEAR					
Course Cod	le AMTME0221 LTP	Credit			
Course Titl	e Rapid Manufacturing & Tooling 3 0 0	3			
Course obj	ective:				
1	Able to know the fundamentals of RP Systems & its evolution and the Process in RP and association o modelling & Mesh	f RP Systems with 3D			
2	Able to know the RP Systems, Process, Materials & Classifications				
3	Able to know and working with Mesh File & their formats like STL format, 3MF format, OBJ formats. Conversion to Mesh files, their properties, operations, storage, inspections & defects				
4	Able to know the applications of RP Systems in various Fields				
	Course Contents / Syllabus				
UNIT-I	Introduction:	4 hours			
	velopments, Fundamentals of RP Systems and its Classification on different basis, Rapid Prototyping Protection, Data Conversion and Transmission.	cocess Chains, 3D Modelling			
and mesh del					
UNIT-II	RP Systems:				
UNIT-II Liquid Polym Object Manuf		otyping Systems: Laminated			
UNIT-II Liquid Polym Object Manuf	RP Systems: er Based Rapid Prototyping systems: SLA, Material Jetting, Solid Input Materials Based Rapid Proto facturing (LOM) and Fused Deposition Modelling Systems, Power Based Rapid Prototyping Systems	otyping Systems: Laminated s: Selective Laser Sintering,			
UNIT-II Liquid Polym Object Manuf Multi-Jet Fusi UNIT-III	RP Systems: er Based Rapid Prototyping systems: SLA, Material Jetting, Solid Input Materials Based Rapid Protofacturing (LOM) and Fused Deposition Modelling Systems, Power Based Rapid Prototyping Systems on, Binder Jetting Systems.	otyping Systems: Laminated s: Selective Laser Sintering, 8 hours			
UNIT-II Liquid Polym Object Manuf Multi-Jet Fusi UNIT-III	RP Systems: aer Based Rapid Prototyping systems: SLA, Material Jetting, Solid Input Materials Based Rapid Prototyping facturing (LOM) and Fused Deposition Modelling Systems, Power Based Rapid Prototyping Systems on, Binder Jetting Systems. RP Database & Design Optimization:	s: Selective Laser Sintering, 8 hours			
UNIT-II Liquid Polym Object Manuf Multi-Jet Fusi UNIT-III Rapid Prototy UNIT-IV Development	RP Systems: are Based Rapid Prototyping systems: SLA, Material Jetting, Solid Input Materials Based Rapid Prototyping facturing (LOM) and Fused Deposition Modelling Systems, Power Based Rapid Prototyping Systems, on, Binder Jetting Systems. RP Database & Design Optimization: ping Data Formats, STL Format, STL file problems, STL file repair, DfAM, Topology Optimization, Gco	otyping Systems: Laminated s: Selective Laser Sintering, 8 hours ode for RP Systems 8 hours			
UNIT-II Liquid Polym Object Manuf Multi-Jet Fusi UNIT-III Rapid Prototy UNIT-IV Development	RP Systems: Rer Based Rapid Prototyping systems: SLA, Material Jetting, Solid Input Materials Based Rapid Prototyping Systems facturing (LOM) and Fused Deposition Modelling Systems, Power Based Rapid Prototyping Systems on, Binder Jetting Systems. RP Database & Design Optimization: ping Data Formats, STL Format, STL file problems, STL file repair, DfAM, Topology Optimization, Gcd RP Applications: of dies for Moulding, RP Applications in developing prototypes of products, application in medical fand tissues, etc., RP materials and their biological acceptability.	otyping Systems: Laminated s: Selective Laser Sintering, 8 hours ode for RP Systems 8 hours			
UNIT-II Liquid Polym Object Manuf Multi-Jet Fusi UNIT-III Rapid Prototy UNIT-IV Development replacements	RP Systems: Rer Based Rapid Prototyping systems: SLA, Material Jetting, Solid Input Materials Based Rapid Prototyping facturing (LOM) and Fused Deposition Modelling Systems, Power Based Rapid Prototyping Systems on, Binder Jetting Systems. RP Database & Design Optimization: ping Data Formats, STL Format, STL file problems, STL file repair, DfAM, Topology Optimization, Gcd RP Applications: of dies for Moulding, RP Applications in developing prototypes of products, application in medical fand tissues, etc., RP materials and their biological acceptability.	otyping Systems: Laminated s: Selective Laser Sintering, 8 hours ode for RP Systems 8 hours			
UNIT-II Liquid Polym Object Manuf Multi-Jet Fusi UNIT-III Rapid Prototy UNIT-IV Development replacements Course out	RP Systems: er Based Rapid Prototyping systems: SLA, Material Jetting, Solid Input Materials Based Rapid Prototyping Systems: facturing (LOM) and Fused Deposition Modelling Systems, Power Based Rapid Prototyping Systems: on, Binder Jetting Systems. RP Database & Design Optimization: ping Data Formats, STL Format, STL file problems, STL file repair, DfAM, Topology Optimization, Gcc RP Applications: of dies for Moulding, RP Applications in developing prototypes of products, application in medical fand tissues, etc., RP materials and their biological acceptability. Come: After completion of this course students will be able to	otyping Systems: Laminated s: Selective Laser Sintering, 8 hours ode for RP Systems 8 hours fields, Development of bone K1,K2			

CO 4	Understand the various applications of various RP Systems with case studies & Materials	K3,K4			
Text books					
1. Rapid Prototyping: Principles an Applications: Chee Kai Chua, Kah Fai Leong, Chu Sing Lim					
2. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing: Brent Stucker, David W. Rosen, Ian					
Gibson					
Reference Books					
1. Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling: Pham, Duc, Dimov, S.S.					
2. Rapid Prototyping and Manufacturing: Fundamentals of Stereo Lithography: P. Jacobs					
3. Rapid Syst	3. Rapid System Prototyping with FPGAs: Accelerating the Design Process: R.C. Cofer, Benjamin F. Harding				
4. Rapid Prototyping of Digital Systems: Hamblen, James O., Hall, Tyson S., Furman, Michael D.					

	M. TECH FIRST YEAR				
Course Cod	e AMTME0222	L T P	Credit 3		
Course Title	e Hybrid Vehicle Technology	300			
Course obje	ective:	<u>i</u>			
1	Understand working of Electric Vehicles and recent trends.				
2	Know-how & aptitude towards future trends in Hybrid Electric Vehicles	Know-how & aptitude towards future trends in Hybrid Electric Vehicles			
3	Understand the various energy storage devices				
4	Understand the drive systems of hybrid vehicles	Understand the drive systems of hybrid vehicles			
5	Understand energy management strategies				
	Course Contents / Syllabus				
UNIT-I	Introduction:		4 hours		
	Hybrid Electric Vehicles Conventional Vehicles. Hybrid Electric Drive-trai	ins and Electric Drive-trains: Basi			
	uction to various electric drive-train topologies, power flow control in electric		*		
UNIT-II	Electric Propulsion unit		12 hou		
-	ulsion unit: Introduction to electric components used in hybrid and electric v				
0	and control of Induction Motor drives, configuration and control of Permane	ent Magnet Motor drives, Configu	ration and control		
	ance Motor drives, drive system efficiency.				
UNIT-III	Energy Storage		8 hou		
	ge: Introduction to Energy Storage Requirements in Hybrid and Electric Veh torage and its analysis, Hybridization of different energy storage devices.	icles. Battery, Fuel Cell, Super Caj	pacitor and Flywhe		
UNIT-IV	Sizing the drive system		8 hou		
	ve system: Matching the electric machine and the internal combustion engin	e (ICE) Sizing the propulsion mo			
0	ecting the energy storage technology, Communications, supporting sub system		tor, sizing the pow		
UNIT-V	Energy Management Strategies		8 hou		
• = · = = ·	gement Strategies: Introduction to energy management strategies used in	hybrid and electric vehicles, class			
	ement strategies, comparison of different energy management strategies, im	•			
Case Studies: I	Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehic	cle (BEV).			
Course outc	come: After completion of this course students will be able to				

CO 1	Develop the electric propulsion unit and its control for application of electric vehicles.	K1,K2
CO 2	Analyze different power converter topology used for electric vehicle application.	K3, K4
CO 3	Identify the principles of energy storage in hybrid vehicles	K3, K4, K5
CO 4	Analyze the drive systems sizing.	K3,K4
CO5	Develop the strategies for engine management.	K4
Text book	IS I I I I I I I I I I I I I I I I I I	
Iqbal Husse	in, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003	
Mehrdad Eh	nsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell V	Vehicles: Fundamentals, Theory and
Design, CRO	C Press, 2004	
Reference	e Books	
James Larm	inie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003	
Chris Mi, M	I. Abul Masrur, David Wenzhong Gao, Hybrid Electric Vehicles: Principles and Applications with	Practical Perspectives, John Wiley &

Sons Ltd., 2011